YeÅ**ž**ren Saylan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/82839/publications.pdf

Version: 2024-02-01

48 1,615 21 39 g-index

52 52 52 52 1505

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Nanosensors for medical diagnosis. , 2022, , 195-213.		1
2	Sensitive and real-time detection of IgG using interferometric reflecting imaging sensor system. Biosensors and Bioelectronics, 2022, 201, 113961.	5. 3	12
3	Ion-Imprinted Polymer-on-a-Sensor for Copper Detection. Biosensors, 2022, 12, 91.	2.3	20
4	Scaling up of biosensors for clinical applications and commercialization. , 2022, , 407-421.		0
5	Preparation of magnetic nanoparticles-assisted plasmonic biosensors with metal affinity for interferon-α detection. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 280, 115687.	1.7	11
6	Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Analytical Chemistry, 2022, 94, 3-25.	3.2	13
7	Nanosensors for smartphone-enabled sensing devices. , 2022, , 85-104.		O
8	Selective Amplification of Plasmonic Sensor Signal for Cortisol Detection Using Gold Nanoparticles. Biosensors, 2022, 12, 482.	2.3	17
9	Designing composite cryogel carriers for tyrosine adsorption. Separation and Purification Technology, 2021, 254, 117622.	3.9	7
10	Recent advances of medical biosensors for clinical applications. Medical Devices & Sensors, 2021, 4, e10129.	2.7	7
11	Nanobiosensors for Biomedical Applications. Nanotechnology in the Life Sciences, 2021, , 147-157.	0.4	2
12	A Snapshot of Microfluidics in Pointâ€ofâ€Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021, 6, 2100049.	3.0	31
13	Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. Biosensors, 2021, 11, 296.	2.3	49
14	Fundamentals and Applications of Molecularly Imprinted Systems., 2021,, 1-17.		1
15	Molecularly Imprinted Sensors for Detecting Controlled Release of Pesticides. , 2020, , 207-235.		3
16	A disposable microfluidic-integrated hand-held plasmonic platform for protein detection. Applied Materials Today, 2020, 18, 100478.	2.3	45
17	Comparison of molecularly imprinted plasmonic nanosensor performances for bacteriophage detection. New Journal of Chemistry, 2020, 44, 17654-17663.	1.4	10
18	Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. Biosensors, 2020, 10, 142.	2.3	34

#	Article	IF	CITATIONS
19	Magnetic bacterial cellulose nanofibers for nucleoside recognition. Cellulose, 2020, 27, 9479-9492.	2.4	17
20	Advances in Biomimetic Systems for Molecular Recognition and Biosensing. Biomimetics, 2020, 5, 20.	1.5	52
21	Enhancing the nanoplasmonic signal by a nanoparticle sandwiching strategy to detect viruses. Applied Materials Today, 2020, 20, 100709.	2.3	26
22	Virus detection using nanosensors. , 2020, , 501-511.		26
23	Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1211-1222.	1.9	15
24	Advances in Molecularly Imprinted Systems: Materials, Characterization Methods and Analytical Applications. Current Analytical Chemistry, 2020, 16, 196-207.	0.6	11
25	Detecting Fingerprints of Waterborne Bacteria on a Sensor. Chemosensors, 2019, 7, 33.	1.8	33
26	Introduction to Nanoscience, Nanomaterials, Nanocomposite, Nanopolymer, and Engineering Smart Materials. Nanotechnology in the Life Sciences, 2019, , 1-12.	0.4	2
27	An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. Biosensors, 2019, 9, 65.	2.3	201
28	Supermacroporous Composite Cryogels in Biomedical Applications. Gels, 2019, 5, 20.	2.1	68
29	Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors, 2019, 19, 1279.	2.1	180
30	Molecularly Imprinted Polymer-Based Microfluidic Systems for Point-of-Care Applications. Micromachines, 2019, 10, 766.	1.4	29
31	Molecularly imprinted nanoparticles based plasmonic sensors for real-time Enterococcus faecalis detection. Biosensors and Bioelectronics, 2019, 126, 608-614.	5.3	77
32	Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method. Biomimetics, 2018, 3, 38.	1.5	38
33	Microfluidics: A Novel Onâ€Chip Method for Differential Extraction of Sperm in Forensic Cases (Adv.) Tj ETQq1 1	0.784314	rgBT /Overlo
34	Molecular Fingerprints of Hemoglobin on a Nanofilm Chip. Sensors, 2018, 18, 3016.	2.1	51
35	A Novel Onâ€Chip Method for Differential Extraction of Sperm in Forensic Cases. Advanced Science, 2018, 5, 1800121.	5.6	34
36	Surface Plasmon Resonance Sensors for Medical Diagnosis. , 2018, , 425-458.		6

#	Article	IF	CITATIONS
37	Synthesis of hydrophobic nanoparticles for realâ€time lysozyme detection using surface plasmon resonance sensor. Journal of Molecular Recognition, 2017, 30, e2631.	1.1	37
38	Surface plasmon resonance based nanosensors for detection of triazinic pesticides in agricultural foods., 2017,, 679-718.		11
39	Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1950-1965.	1.9	20
40	Molecular Imprinting of Macromolecules for Sensor Applications. Sensors, 2017, 17, 898.	2.1	133
41	Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 2017, 241, 446-454.	4.0	105
42	Molecularly imprinted plasmonic biosensors for hemoglobin detection., 2016,,.		1
43	Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 585-594.	1.2	23
44	Alanine Functionalized Magnetic Nanoparticles for Reversible Amyloglucosidase Immobilization. Industrial & Engineering Chemistry Research, 2015, 54, 454-461.	1.8	22
45	Monolithic Boronate Affinity Columns for IgG Separation. Separation Science and Technology, 2014, 49, 1555-1565.	1.3	16
46	Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 881-894.	1.9	34
47	Hydrophobic microbeads as an alternative pseudo-affinity adsorbent for recombinant human interferon- \hat{l}_{\pm} via hydrophobic interactions. Materials Science and Engineering C, 2012, 32, 937-944.	3.8	17
48	l-Histidine imprinted supermacroporous cryogels for protein recognition. Separation and Purification Technology, 2011, 82, 28-35.	3.9	63