Mark A Lawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283804/publications.pdf

Version: 2024-02-01

331670 361022 1,246 39 21 35 h-index citations g-index papers 39 39 39 1193 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, \hat{l}^2 -arrestin- $2\hat{a}\in \hat{l}$ mediated SphK1-S1PR1-Akt signaling axis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
2	Androgen Suppresses In Vivo and In Vitro LH Pulse Secretion and Neural <i>Kiss1</i> and <i>Tac2</i> Gene Expression in Female Mice. Endocrinology, 2020, 161, .	2.8	12
3	GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Scientific Reports, 2020, 10, 13063.	3.3	7
4	The RNA-Binding Protein ELAVL1 Regulates GnRH Receptor Expression and the Response to GnRH. Endocrinology, 2019, 160, 1999-2014.	2.8	11
5	SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology, 2019, 160, 2543-2555.	2.8	12
6	Individual 17-Hydroxyprogesterone Responses to hCG Are Not Correlated With Follicle Size in Polycystic Ovary Syndrome. Journal of the Endocrine Society, 2019, 3, 687-698.	0.2	5
7	Induction of Stress Signaling In Vitro and Suppression of Gonadotropin Secretion by Free Fatty Acids in Female Mouse Gonadotropes. Endocrinology, 2018, 159, 1074-1087.	2.8	11
8	Reactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope. Frontiers in Endocrinology, 2017, 8, 286.	3.5	12
9	GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology, 2015, 156, 2185-2199.	2.8	18
10	Lack of Serum Anti-Mullerian Hormone Responses After Recombinant Human Chorionic Gonadotropin Stimulation in Women With Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 251-257.	3.6	7
11	Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins. Journal of Biological Chemistry, 2014, 289, 1580-1591.	3.4	13
12	Translational control of gene expression in the gonadotrope. Molecular and Cellular Endocrinology, 2014, 385, 78-87.	3.2	18
13	Polyribosome and ribonucleoprotein complex redistribution of mRNA induced by GnRH involves both EIF2AK3 and MAPK signaling. Molecular and Cellular Endocrinology, 2014, 382, 346-357.	3.2	11
14	Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Molecular and Cellular Endocrinology, 2013, 381, 8-15.	3.2	32
15	hCG-induced endoplasmic reticulum stress triggers apoptosis and reduces steroidogenic enzyme expression through activating transcription factor 6 in Leydig cells of the testis. Journal of Molecular Endocrinology, 2013, 50, 151-166.	2.5	66
16	Interaction between gonadotropin-releasing hormone and bone morphogenetic protein-6 and -7 signaling in \hat{L}^2 T2 gonadotrope cells. Molecular and Cellular Endocrinology, 2012, 348, 147-154.	3.2	17
17	Gonadotropin-Releasing Hormone Pulse Sensitivity of Follicle-Stimulating Hormone- \hat{l}^2 Gene Is Mediated by Differential Expression of Positive Regulatory Activator Protein 1 Factors and Corepressors SKIL and TGIF1. Molecular Endocrinology, 2011, 25, 1387-1403.	3.7	39
18	Modulation of Gonadotropin-Releasing Hormone-Induced Extracellular Signal-Regulated Kinase Activation by Dual-Specificity Protein Phosphatase 1 in \hat{L}^2 T2 Gonadotropes. Endocrinology, 2010, 151, 4882-4893.	2.8	21

#	Article	IF	CITATIONS
19	Serum Anti-Mul`lerian Hormone Concentrations Are Elevated in Oligomenorrheic Girls without Evidence of Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1786-1792.	3.6	67
20	GNRH Induces the Unfolded Protein Response in the LÎ 2 T2 Pituitary Gonadotrope Cell Line. Molecular Endocrinology, 2009, 23, 100-112.	3.7	17
21	Insulin augments gonadotropin-releasing hormone induction of translation in L \hat{I}^2 T2 cells. Molecular and Cellular Endocrinology, 2009, 311, 47-54.	3.2	32
22	A Proteomic Comparison of Immature and Mature Mouse Gonadotrophs Reveals Novel Differentially Expressed Nuclear Proteins that Regulate Gonadotropin Gene Transcription and RNA Splicing 1. Biology of Reproduction, 2008, 79, 546-561.	2.7	27
23	Evidence for Insulin Suppression of Baseline Luteinizing Hormone in Women with Polycystic Ovarian Syndrome and Normal Women. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2089-2096.	3.6	58
24	Pulse Sensitivity of the Luteinizing Hormone \hat{l}^2 Promoter Is Determined by a Negative Feedback Loop Involving Early Growth Response-1 and Ngfi-A Binding Protein 1 and 2. Molecular Endocrinology, 2007, 21, 1175-1191.	3.7	81
25	Activin Modulates the Transcriptional Response of Lî ² T2 Cells to Gonadotropin-Releasing Hormone and Alters Cellular Proliferation. Molecular Endocrinology, 2006, 20, 2909-2930.	3.7	40
26	Acute Regulation of Translation Initiation by Gonadotropin-Releasing Hormone in the Gonadotrope Cell Line $\hat{L^2}$ T2. Molecular Endocrinology, 2004, 18, 1301-1312.	3.7	47
27	Increased Luteinizing Hormone Secretion in Women with Polycystic Ovary Syndrome Is Unaltered by Prolonged Insulin Infusion. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5456-5461.	3.6	49
28	Different Signaling Pathways Control Acute Induction versus Long-Term Repression of $LH\hat{I}^2$ Transcription by GnRH. Endocrinology, 2002, 143, 3414-3426.	2.8	43
29	Mechanism of Selective Retinoid X Receptor Agonist-Induced Hypothyroidism in the Rat. Endocrinology, 2002, 143, 2880-2885.	2.8	65
30	Neuron-Specific Expression in Vivo by Defined Transcription Regulatory Elements of the GnRH Gene. Endocrinology, 2002, 143, 1404-1412.	2.8	41
31	Neuron-Specific Expression in Vivo by Defined Transcription Regulatory Elements of the GnRH Gene. Endocrinology, 2002, 143, 1404-1412.	2.8	19
32	Neuron-Specific Expression of the Rat Gonadotropin-Releasing Hormone Gene Is Conferred by Interactions of a Defined Promoter Element with the Enhancer in GT1 \hat{a} €"7 Cells. Molecular Endocrinology, 2000, 14, 1509-1522.	3.7	46
33	Activation of Translation in Pituitary Gonadotrope Cells by Gonadotropin-Releasing Hormone. Molecular Endocrinology, 2000, 14, 1811-1819.	3.7	33
34	Activin A Regulation of Gonadotropin-Releasing Hormone Synthesis and Release in vitro. Neuroendocrinology, 1999, 70, 246-254.	2.5	39
35	Expression of GATA-4 in migrating gonadotropin-releasing neurons of the developing mouse. Molecular and Cellular Endocrinology, 1998, 140, 157-161.	3.2	36
36	Multiple Factors Interacting at the GATA Sites of the Gonadotropin-Releasing Hormone Neuron-Specific Enhancer Regulate Gene Expression. Molecular Endocrinology, 1998, 12, 364-377.	3.7	38

#	Article	IF	CITATIONS
37	An Immortal Cell Culture Model of Hypothalamic Gonadotropin-Releasing Hormone Neurons. Methods, 1995, 7, 303-310.	3.8	18
38	Alternate poliovirus nonstructural protein processing cascades generated by primary sites of 3C proteinase cleavage. Virology, 1992, 191, 309-320.	2.4	63
39	Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9919-9923.	7.1	63