
Emilio Zornoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283424/publications.pdf

Version: 2024-02-01

ΕΜΙΙΙΟ ΖΟΡΝΟΖΑ

#	Article	IF	CITATIONS
1	Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cement and Concrete Composites, 2014, 46, 90-98.	10.7	210
2	Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Materials & Design, 2013, 51, 1085-1094.	5.1	141
3	Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements. Materials, 2013, 6, 841-855.	2.9	139
4	Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials, 2015, 75, 442-449.	7.2	138
5	Mechanical Properties and Durability of CNT Cement Composites. Materials, 2014, 7, 1640-1651.	2.9	103
6	Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period. Corrosion Science, 2008, 50, 498-509.	6.6	84
7	Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Materials & Design, 2010, 31, 1553-1558.	5.1	70
8	Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Construction and Building Materials, 2016, 116, 63-71.	7.2	68
9	Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Materials & Design, 2012, 34, 332-339.	5.1	66
10	Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers. Materials, 2013, 6, 4776-4786.	2.9	61
11	Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corrosion Science, 2011, 53, 3991-4000.	6.6	59
12	Silica fume admixture effect on the dynamic properties of concrete. Construction and Building Materials, 2011, 25, 3272-3277.	7.2	55
13	Mechanical properties and corrosion of CAC mortars with carbon fibers. Construction and Building Materials, 2012, 34, 91-96.	7.2	54
14	Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder–cement paste as anode. Corrosion Science, 2013, 77, 128-134.	6.6	54
15	Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst. Materials, 2014, 7, 3176-3197.	2.9	52
16	Performance of cement-based sensors with CNT for strain sensing. Advances in Cement Research, 2016, 28, 274-284.	1.6	51
17	Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst. Corrosion Science, 2008, 50, 1567-1575.	6.6	50
18	Corrosion of steel reinforcement in structural concrete with carbon material addition. Corrosion Science, 2007, 49, 2557-2566.	6.6	49

Emilio Zornoza

#	Article	IF	CITATIONS
19	The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 2010, 32, 204-210.	10.7	43
20	Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression. Nanomaterials, 2017, 7, 413.	4.1	32
21	Efecto de la adición de nanofibras de carbono en las propiedades mecánicas y de durabilidad de materiales cementantes. Materiales De Construccion, 2012, 62, 343-357.	0.7	32
22	Variables affecting strain sensing function in cementitious composites with carbon fibers. Computers and Concrete, 2011, 8, 229-241.	0.7	28
23	Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 2009, 39, 126-139.	11.0	27
24	Heating and de-icing function in conductive concrete and cement paste with the hybrid addition of carbon nanotubes and graphite products. Smart Materials and Structures, 2021, 30, 045010.	3.5	27
25	Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Materiales De Construccion, 2014, 64, e002.	0.7	24
26	Accelerated carbonation of cement pastes partially substituted with fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Composites, 2009, 31, 134-138.	10.7	23
27	The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 2009, 23, 1323-1328.	7.2	23
28	Temperature and humidity influence on the strain sensing performance of hybrid carbon nanotubes and graphite cement composites. Construction and Building Materials, 2021, 284, 122786.	7.2	22
29	Función de apantallamiento de interferencia electromagnética de pastas de cemento con materiales carbonosos y cenizas volantes procesadas. Materiales De Construccion, 2010, 60, 21-32.	0.7	22
30	Influence of the Oxidation Process of Carbon Material on the Mechanical Properties of Cement Mortars. Journal of Materials in Civil Engineering, 2011, 23, 321-329.	2.9	21
31	Carbonation rate and reinforcing steel corrosion rate of OPC/FC3R/FA mortars under accelerated conditions. Advances in Cement Research, 2009, 21, 15-22.	1.6	17
32	Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement. Advances in Cement Research, 2007, 19, 117-124.	1.6	15
33	Pozzolanic activity of a spent fluid catalytic cracking catalyst residue. Advances in Cement Research, 2011, 23, 105-111.	1.6	15
34	The Effect of Different Oxygen Surface Functionalization of Carbon Nanotubes on the Electrical Resistivity and Strain Sensing Function of Cement Pastes. Nanomaterials, 2020, 10, 807.	4.1	12
35	Improving Sustainability through Corrosion Resistance of Reinforced Concrete by Using a Manufactured Blended Cement and Fly Ash. Sustainability, 2018, 10, 2004.	3.2	9
36	Self-heating function of carbon nanofiber cement pastes. Materiales De Construccion, 2014, 64, e015.	0.7	8

Emilio Zornoza

#	Article	IF	CITATIONS
37	Influence of the type and concentration of the activator on the microstructure of alkali activated SiMn slag pastes. Construction and Building Materials, 2022, 342, 128067.	7.2	7
38	Steel Corrosion-Inhibiting Effect of Sodium Nitrate in Simulated Concrete Pore Solutions. Corrosion, 2011, 67, 075005-1-075005-15.	1.1	5
39	Estudio de la velocidad de corrosión de aceros embebidos en morteros de cemento sustituidos con residuo de catalizador de craqueo catalÃtico (FC3R). Materiales De Construccion, 2008, 58, .	0.7	5
40	Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period. Materials, 2022, 15, 2216.	2.9	4
41	Durability and Mechanical Properties of CNT Cement Composites. RILEM Bookseries, 2019, , 31-41.	0.4	2