List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283341/publications.pdf Version: 2024-02-01

		53751	58549
221	8,463	45	82
papers	citations	h-index	g-index
227	227	227	9827
all docs	docs citations	times ranked	citing authors

LIAN-MELLU

#	Article	IF	CITATIONS
1	Advanced applications of ionic liquids in polymer science. Progress in Polymer Science, 2009, 34, 431-448.	11.8	985
2	Reversible Lithiumâ€ion Storage in Silverâ€Treated Nanoscale Hollow Porous Silicon Particles. Angewandte Chemie - International Edition, 2012, 51, 2409-2413.	7.2	299
3	Cross-Linked Alkaline Ionic Liquid-Based Polymer Electrolytes for Alkaline Fuel Cell Applications. Chemistry of Materials, 2010, 22, 6718-6725.	3.2	294
4	Graphene-Encapsulated Hollow Fe ₃ O ₄ Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3078-3083.	4.0	288
5	Synthesis, Characterization, and Nonvolatile Ternary Memory Behavior of a Larger Heteroacene with Nine Linearly Fused Rings and Two Different Heteroatoms. Journal of the American Chemical Society, 2013, 135, 14086-14089.	6.6	201
6	Protic Ionic Liquid-Based Hybrid Proton-Conducting Membranes for Anhydrous Proton Exchange Membrane Application. Chemistry of Materials, 2010, 22, 1807-1813.	3.2	192
7	A Small-Molecule-Based Ternary Data-Storage Device. Journal of the American Chemical Society, 2010, 132, 5542-5543.	6.6	183
8	Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions. Chemistry of Materials, 2009, 21, 1480-1484.	3.2	142
9	Tailoring of Molecular Planarity to Reduce Charge Injection Barrier for Highâ€Performance Smallâ€Moleculeâ€Based Ternary Memory Device with Low Threshold Voltage. Advanced Materials, 2012, 24, 6210-6215.	11.1	131
10	Conductivity Switching and Electronic Memory Effect in Polymers with Pendant Azobenzene Chromophores. ACS Applied Materials & Interfaces, 2009, 1, 60-71.	4.0	126
11	Recent advances in organicâ€based materials for resistive memory applications. InformaÄnÃ-Materiály, 2020, 2, 995-1033.	8.5	125
12	Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. Journal of Materials Chemistry B, 2013, 1, 5942.	2.9	109
13	Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Advanced Functional Materials, 2013, 23, 4324-4331.	7.8	105
14	Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Chemical Communications, 2012, 48, 10010.	2.2	102
15	Rational Design of Small Molecules to Implement Organic Quaternary Memory Devices. Advanced Functional Materials, 2016, 26, 146-154.	7.8	102
16	Multilevel Conductance Switching of a Memory Device Induced by Enhanced Intermolecular Charge Transfer. Advanced Materials, 2015, 27, 5968-5973.	11.1	100
17	A coumarin–indole-based near-infrared ratiometric pH probe for intracellular fluorescence imaging. Analyst, The, 2013, 138, 6542.	1.7	93
18	Pseudohalideâ€Induced 2D (CH ₃ NH ₃) ₂ PbI ₂ (SCN) ₂ Perovskite for Ternary Resistive Memory with High Performance. Small, 2018, 14, e1703667.	5.2	91

#	Article	IF	CITATIONS
19	Highly efficient synthesis of aromatic azos catalyzed by unsupported ultra-thin Pt nanowires. Chemical Communications, 2012, 48, 3445.	2.2	89
20	A Highly Active Nano-Palladium Catalyst for the Preparation of Aromatic Azos under Mild Conditions. Organic Letters, 2011, 13, 5640-5643.	2.4	86
21	Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. Journal of Materials Chemistry, 2010, 20, 6422.	6.7	85
22	Benzo[<i>a</i>]phenoxazinium-Based Red-Emitting Chemosensor for Zinc Ions in Biological Media. Organic Letters, 2011, 13, 2710-2713.	2.4	82
23	Highâ€Temperature Solidâ€State Dyeâ€Sensitized Solar Cells Based on Organic Ionic Plastic Crystal Electrolytes. Advanced Materials, 2012, 24, 945-950.	11.1	82
24	High Performance Cross-Linked Poly(2-acrylamido-2-methylpropanesulfonic acid)-Based Proton Exchange Membranes for Fuel Cells. Macromolecules, 2010, 43, 6398-6405.	2.2	78
25	Controlling Crystallite Orientation of Diketopyrrolopyrroleâ€Based Small Molecules in Thin Films for Highly Reproducible Multilevel Memory Device: Role of Furan Substitution. Advanced Functional Materials, 2015, 25, 4246-4254.	7.8	76
26	Chain Walking Ethylene Copolymerization with an ATRP Inimer for Oneâ€Pot Synthesis of Hyperbranched Polyethylenes Tethered with ATRP Initiating Sites. Macromolecular Rapid Communications, 2007, 28, 2185-2191.	2.0	75
27	Reversible Hydrogenation–Oxidative Dehydrogenation of Quinolines over a Highly Active Pt Nanowire Catalyst under Mild Conditions. ChemCatChem, 2013, 5, 2183-2186.	1.8	75
28	1D Ï€â€d Conjugated Coordination Polymers for Multilevel Memory of Longâ€Term and Highâ€Temperature Stability. Advanced Electronic Materials, 2017, 3, 1700107.	2.6	73
29	Ultrathin Platinum Nanowire Catalysts for Direct CN Coupling of Carbonyls with Aromatic Nitro Compounds under 1â€Bar of Hydrogen. Chemistry - A European Journal, 2011, 17, 14283-14287.	1.7	70
30	Direct Hydrogenation of Nitroaromatics and Oneâ€Pot Amidation with Carboxylic Acids over Platinum Nanowires. Chemistry - A European Journal, 2011, 17, 2763-2768.	1.7	67
31	Polymerization of Ionic Liquid-Based Microemulsions: A Versatile Method for the Synthesis of Polymer Electrolytes. Macromolecules, 2008, 41, 3389-3392.	2.2	66
32	Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release. Journal of Materials Chemistry B, 2014, 2, 1182.	2.9	63
33	Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release. Microporous and Mesoporous Materials, 2012, 152, 16-24.	2.2	62
34	Molecular length adjustment for organic azo-based nonvolatile ternary memory devices. Journal of Materials Chemistry, 2012, 22, 16582.	6.7	61
35	Visible-light degradable polymer coated hollow mesoporous silica nanoparticles for controlled drug release and cell imaging. Journal of Materials Chemistry B, 2013, 1, 4628.	2.9	59
36	Preparation of Pt@Fe ₂ O ₃ Nanowires and their Catalysis of Selective Oxidation of Olefins and Alcohols. Chemistry - A European Journal, 2011, 17, 8726-8730.	1.7	58

#	Article	IF	CITATIONS
37	"Core-First―Synthesis of Multiarm Star Polyethylenes with a Hyperbranched Core and Linear Arms via Ethylene Multifunctional "Living―Polymerization with Hyperbranched Polyethylenes Encapsulating Multinuclear Covalently Tethered Pd-Diimine Catalysts. Macromolecules, 2010, 43, 4889-4901.	2.2	56
38	Microemulsion polymerization of cationic pyrroles bearing an imidazolumâ€ionic liquid moiety. Journal of Polymer Science Part A, 2009, 47, 746-753.	2.5	52
39	Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. Journal of Power Sources, 2011, 196, 7979-7984.	4.0	52
40	Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application. Journal of Materials Chemistry, 2012, 22, 18411.	6.7	51
41	Reverse atom transfer radical solution polymerization of methyl methacrylate under pulsed microwave irradiation. Journal of Polymer Science Part A, 2002, 40, 3823-3834.	2.5	50
42	Facile preparation of coating fluorescent hollow mesoporous silica nanoparticles with pH-sensitive amphiphilic diblock copolymer for controlled drug release and cell imaging. Soft Matter, 2012, 8, 5309.	1.2	50
43	Highly Robust Organometallic Small-Molecule-Based Nonvolatile Resistive Memory Controlled by a Redox-Gated Switching Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 40332-40338.	4.0	50
44	Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 2014, 6, 14903-14910.	2.8	48
45	Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 2016, 12, 360-370.	5.2	47
46	Adjustment of charge trap number and depth in molecular backbone to achieve tunable multilevel data storage performance. Journal of Materials Chemistry C, 2013, 1, 2320.	2.7	46
47	A polymeric chemosensor for Fe3+ based on fluorescence quenching of polymer with quinoline derivative in the side chain. Materials Chemistry and Physics, 2009, 114, 339-343.	2.0	45
48	Effect of a π-spacer between a donor and an acceptor on small molecule-based data-storage device performance. Chemical Communications, 2013, 49, 9470.	2.2	44
49	Effects of gradual oxidation of aromatic sulphur-heterocycle derivatives on multilevel memory data storage performance. Journal of Materials Chemistry C, 2015, 3, 2033-2039.	2.7	44
50	pH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery. Journal of Materials Chemistry, 2011, 21, 12682.	6.7	43
51	Acetals moiety contained pH-sensitive amphiphilic copolymer self-assembly used for drug carrier. Polymer, 2010, 51, 1709-1715.	1.8	42
52	Nonlinear optical properties and memory effects of the azo polymers carrying different substituents. Dyes and Pigments, 2011, 88, 18-24.	2.0	42
53	A facile preparation of targetable pH-sensitive polymeric nanocarriers with encapsulated magnetic nanoparticles for controlled drug release. Journal of Materials Chemistry, 2012, 22, 25354.	6.7	42
54	Two Different Memory Characteristics Controlled by the Film Thickness of Polymethacrylate Containing Pendant Azobenzothiazole. Journal of Physical Chemistry C, 2010, 114, 6117-6122.	1.5	41

#	Article	IF	CITATIONS
55	Sustainable Polymerizations in Recoverable Microemulsions. Langmuir, 2010, 26, 3803-3806.	1.6	40
56	Thermally Stable Ternary Data-Storage Device Based on Twisted Anthraquinone Molecular Design. Journal of Physical Chemistry C, 2012, 116, 22832-22839.	1.5	40
57	Effect of single atom substitution in benzochalcogendiazole acceptors on the performance of ternary memory devices. Journal of Materials Chemistry C, 2015, 3, 9145-9153.	2.7	40
58	Thiadizoloquinoxaline-Based N-Heteroacenes as Active Elements for High-Density Data-Storage Device. ACS Applied Materials & Interfaces, 2018, 10, 15971-15979.	4.0	40
59	Oxidation of benzylic compounds by gold nanowires at 1 atm O ₂ . Chemical Communications, 2011, 47, 1303-1305.	2.2	39
60	Effects of terminal electron acceptor strength on film morphology and ternary memory performance of triphenylamine donor based devices. Journal of Materials Chemistry C, 2013, 1, 3816.	2.7	39
61	Controlled deposition of large-area and highly-ordered thin films: effect of dip-coating-induced morphological evolution on resistive memory performance. Journal of Materials Chemistry C, 2019, 7, 3512-3521.	2.7	38
62	A small-molecule-based device for data storage and electro-optical switch applications. Journal of Materials Chemistry, 2011, 21, 5860.	6.7	37
63	Dynamic Random Access Memory Devices Based on Functionalized Copolymers with Pendant Hydrazine Naphthalimide Group. Journal of Physical Chemistry C, 2011, 115, 8288-8294.	1.5	36
64	Dual-Mechanism-Controlled Ternary Memory Devices Fabricated by Random Copolymers with Pendent Carbazole and Nitro-Azobenzene. Journal of Physical Chemistry C, 2012, 116, 25546-25551.	1.5	36
65	Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices. Dyes and Pigments, 2014, 100, 127-134.	2.0	36
66	A rosamine-based red-emitting fluorescent sensor for detecting intracellular pH in live cells. Sensors and Actuators B: Chemical, 2014, 201, 426-432.	4.0	35
67	Synthesis and the third-order nonlinear optical properties of soluble polymers with different substituted azobenzene side chains. Polymer, 2009, 50, 428-433.	1.8	34
68	Electronic effect of terminal acceptor groups on different organic donor–acceptor small-molecule based memory devices. Physical Chemistry Chemical Physics, 2014, 16, 17125-17132.	1.3	34
69	A comparative study of symmetrical and unsymmetrical trimethine cyanine dyes bearing benzoxazolyl and benzothiazolyl groups. Dyes and Pigments, 2012, 93, 1506-1511.	2.0	33
70	Improving organic memory performance through mounting conjugated branches on a triphenylamine core. Journal of Materials Chemistry C, 2016, 4, 2579-2586.	2.7	33
71	Adjustment of conformation change and charge trapping in ion-doped polymers to achieve ternary memory performance. Journal of Materials Chemistry C, 2013, 1, 7883.	2.7	32
72	Organic Multilevel Memory Devices of Longâ€Term Environmental Stability via Incorporation of Fluorine. Advanced Electronic Materials, 2016, 2, 1500474.	2.6	32

#	Article	IF	CITATIONS
73	Catalytic epoxidation of stilbene with FePt@Cu nanowires and molecular oxygen. Chemical Communications, 2010, 46, 8591.	2.2	31
74	A benzoxazine–hemicyanine based probe for the colorimetric and ratiometric detection of biothiols. Sensors and Actuators B: Chemical, 2013, 178, 525-531.	4.0	31
75	Solution-Processed Small Molecule Donor/Acceptor Blends for Electrical Memory Devices with Fine-Tunable Storage Performance. Journal of Physical Chemistry C, 2014, 118, 2154-2160.	1.5	31
76	Synthesis and the third-order non-linear optical properties of new azobenzene-containing side-chain polymers. Optical Materials, 2006, 28, 1412-1416.	1.7	30
77	A novel degradable polymeric carrier for selective release and imaging of magnetic nanoparticles. Chemical Communications, 2010, 46, 6708.	2.2	30
78	Facile synthesis of hybrid nanostructures from nanoparticles, nanorods and nanowires. Journal of Materials Chemistry, 2011, 21, 11478.	6.7	30
79	Study of the influences of molecular planarity and aluminum evaporation rate on the performances of electrical memory devices. Journal of Materials Chemistry C, 2014, 2, 5709-5716.	2.7	30
80	Fluorine-Induced Highly Reproducible Resistive Switching Performance: Facile Morphology Control through the Transition between J- and H-Aggregation. ACS Applied Materials & Interfaces, 2017, 9, 9926-9934.	4.0	30
81	Microwave radiation copolymerization in solid state of maleic anhydride and allylthiourea. Journal of Applied Polymer Science, 1998, 68, 1563-1566.	1.3	28
82	ATRP of MMA initiated by 2-bromomethyl-4,5-diphenyloxazole at room temperature and study of fluorescent property. European Polymer Journal, 2007, 43, 2718-2724.	2.6	28
83	WORM memory devices based on conformation change of a PVK derivative with a rigid spacer in side chain. Materials Chemistry and Physics, 2010, 123, 685-689.	2.0	28
84	Improved ternary memory performance of donor–acceptor structured molecules through cyano substitution. Journal of Materials Chemistry C, 2015, 3, 6778-6785.	2.7	28
85	Pseudo-living radical polymerization using triarylmethane as the thermal iniferter. European Polymer Journal, 2008, 44, 2404-2411.	2.6	27
86	Nonvolatile Triâ€State Resistive Memory Behavior of a Stable Pyreneâ€Fused Nâ€Heteroacene with Ten Linearlyâ€Annulated Rings. Chemistry - A European Journal, 2018, 24, 7845-7851.	1.7	27
87	A selective, sensitive probe for mercury(II) ions based on oxazine-thione. Tetrahedron Letters, 2011, 52, 595-597.	0.7	26
88	Catalysis by Pd nanoclusters generated in situ of high-efficiency synthesis of aromatic azo compounds from nitroaromatics under H2 atmosphere. RSC Advances, 2013, 3, 4899.	1.7	26
89	A novel ternary memory property achieved through rational introduction of end-capping naphthalimide acceptors. Journal of Materials Chemistry C, 2017, 5, 7961-7968.	2.7	26
90	Improved Molecular Stacking and Dataâ€Storage Performance of Pyridine―and Pyrimidineâ€Substituted Small Molecules. Advanced Functional Materials, 2018, 28, 1800568.	7.8	26

#	Article	IF	CITATIONS
91	Atom transfer radical polymerization of styrene initiated by 2-(4-chloromethyl-phenyl)-benzoxazole with high activity and fluorescent property. Polymer, 2005, 46, 9186-9191.	1.8	25
92	The synthesis, electrochemical and fluorescent properties of monomers and polymers containing 2,5-diphenyl-1,3,4-thiadiazole. Dyes and Pigments, 2010, 84, 153-158.	2.0	24
93	Controllable and Versatile Electrophoretic Deposition Technology for Monolithic Organic Memory Devices. ACS Applied Materials & Interfaces, 2020, 12, 15482-15490.	4.0	24
94	Toward Highly Robust Nonvolatile Multilevel Memory by Fine Tuning of the Nanostructural Crystalline Solidâ€ S tate Order. Small, 2021, 17, e2100102.	5.2	24
95	Reverse atom transfer radical polymerization of MMA via immobilized catalysts in imidazolium ionic liquids. Journal of Applied Polymer Science, 2007, 103, 3915-3919.	1.3	23
96	Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Chargeâ∉Trapping in Organic Materials. Chemistry - an Asian Journal, 2016, 11, 906-914.	1.7	23
97	One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Science China Chemistry, 2019, 62, 753-760.	4.2	23
98	Bistable memory devices with lower threshold voltage by extending the molecular alkyl-chain length. Physical Chemistry Chemical Physics, 2013, 15, 9212.	1.3	22
99	Benzothiazole derivatives containing different electron acceptors exhibiting totally different data-storage performances. Journal of Materials Chemistry C, 2014, 2, 5673.	2.7	22
100	Preparation of 4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives, their functional polystyrenes and study of their different aggregation induced emission behaviors. Journal of Materials Chemistry C, 2014, 2, 2082-2088.	2.7	22
101	Effects of coal and ammonium polyphosphate on thermal degradation and flame retardancy of polyethylene terephthalate. Journal of Polymer Research, 2010, 17, 621-629.	1.2	21
102	Synthesis of Pt@Fe2O3 nanorods as MRI probes for in vivo application. Chemical Communications, 2011, 47, 6320.	2.2	21
103	Third-order nonlinear optical properties of symmetric phenoxazinium chlorides with resonance structures at 532Ånm. Dyes and Pigments, 2011, 91, 489-494.	2.0	21
104	Tuning memory performances from WORM to flash or DRAM by structural tailoring with different donor moieties. Journal of Materials Chemistry C, 2014, 2, 7674-7680.	2.7	21
105	Metal complex modified azo polymers for multilevel organic memories. Nanoscale, 2015, 7, 7659-7664.	2.8	21
106	An all-in-one memory cell based on a homopolymer with a pyrene side chain and its volatile and nonvolatile resistive switch behaviors. Polymer Chemistry, 2018, 9, 1139-1146.	1.9	21
107	Deriving highly oriented organic nanofibers and ternary memory performance <i>via</i> salification-induced effects. Chemical Communications, 2018, 54, 10610-10613.	2.2	21
108	Upgrading Electroresistive Memory from Binary to Ternary Through Singleâ€Atom Substitution in the Molecular Design. Chemistry - an Asian Journal, 2017, 12, 45-51.	1.7	20

#	Article	IF	CITATIONS
109	Synthesis and photoluminescent property of star polymers with carbzole pendent and a zinc porphyrin core by ATRP. Polymer, 2011, 52, 4261-4267.	1.8	19
110	Memory devices based on functionalized copolymers exhibiting a linear dependence of switch threshold voltage with the pendant nitro-azobenzene moiety content change. Journal of Materials Chemistry, 2012, 22, 19957.	6.7	19
111	Improving the electrical memory performance of pyrazoline moiety via the preparation of its hyperbranched copolymer. Polymer Chemistry, 2014, 5, 2602.	1.9	19
112	Triggering DRAM/SRAM memory behaviors by single atom substitution to alter the molecular planarity. Journal of Materials Chemistry C, 2015, 3, 8605-8611.	2.7	19
113	Insertion of conjugated bridges in organic backbone for better multilevel memory performance: The role of alkynyl group. Organic Electronics, 2016, 28, 155-162.	1.4	19
114	Atom Transfer Radical Polymerization and Third-Order Nonlinear Optical Properties of New Azobenzene-Containing Side-Chain Polymers. Macromolecular Chemistry and Physics, 2007, 208, 399-404.	1.1	18
115	Synthesis of optical-active azo-containing acrylates using atom transfer radical polymerization under microwave irradiation. European Polymer Journal, 2007, 43, 4486-4492.	2.6	18
116	Ternary Flexible Electroâ€resistive Memory Device based on Small Molecules. Chemistry - an Asian Journal, 2016, 11, 1624-1630.	1.7	18
117	Poly(3,4-ethylenedioxythiophene)–Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory. ACS Applied Materials & Interfaces, 2017, 9, 27847-27852.	4.0	18
118	Zn(II) based mixed complex with 8-hydroxyquinoline end group functionalized PSt and the study of fluorescent properties. Optical Materials, 2005, 27, 1350-1357.	1.7	17
119	Synthesis and Optical Properties of a New Series of Side-Chain Poly(amic acid)s With p-? Conjugation. Macromolecular Chemistry and Physics, 2005, 206, 559-565.	1.1	17
120	Third-order nonlinear optical properties of unsymmetric pentamethine cyanine dyes possessing benzoxazolyl and benzothiazolyl groups. Dyes and Pigments, 2013, 96, 189-195.	2.0	17
121	Novel synthesis of polyimides of the third-order optical nonlinearities by microwave assistance. Journal of Applied Polymer Science, 2003, 87, 1739-1747.	1.3	16
122	Synthesis of third-order nonlinear optical polyacrylates containing an azobenzene side chain via atom transfer radical polymerization. Dyes and Pigments, 2009, 80, 73-79.	2.0	16
123	The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts. Dyes and Pigments, 2011, 88, 50-56.	2.0	16
124	Synthesis and in vitro antiprotozoal activities of water-soluble, inexpensive phenothiazinium chlorides. Dyes and Pigments, 2011, 89, 44-48.	2.0	16
125	Selective ratiometric detection of Hg2+ in pure water using a phenoxazinium-based probe. Tetrahedron Letters, 2011, 52, 2492-2495.	0.7	16
126	Improving of molecular planarity via tailoring alkyl chain within the molecules to enhance memory device performance. Dyes and Pigments, 2014, 109, 155-162.	2.0	16

#	Article	IF	CITATIONS
127	Polymerization of benzoguanamine and pyromellitic dianhydride under microwave radiation and its third-order optical nonlinearities. Journal of Applied Polymer Science, 2001, 82, 1356-1363.	1.3	15
128	Third-order nonlinear optical properties of polyureas and polyimide synthesized by microwave irradiation. Journal of Applied Polymer Science, 2003, 89, 2611-2617.	1.3	15
129	Starâ€shaped polymer PFStODO by atom transfer radical polymerization: Its synthesis, characterization, and fluorescence property. Journal of Polymer Science Part A, 2012, 50, 480-487.	2.5	15
130	A New Vâ€6haped Organic Fluorescent Compound Integrated with Crystallizationâ€Induced Emission Enhancement and IntramolecularCharge Transfer. Chemistry - an Asian Journal, 2013, 8, 2161-2166.	1.7	15
131	Comparison of two strategies to improve organic ternary memory performance: 3-Hexylthiophene linkage and fluorine substitution. Dyes and Pigments, 2016, 130, 306-313.	2.0	15
132	Facile synthesis of polymer/Au heteronanoparticles. Chemical Communications, 2011, 47, 4228.	2.2	14
133	Synthesis of cyanine dyes and investigation of their in vitro antiprotozoal activities. MedChemComm, 2012, 3, 1435.	3.5	14
134	Racemic Effect on the Performance of Organic Multilevel Memory: Beyond Molecular Design. Advanced Materials Technologies, 2017, 2, 1700202.	3.0	14
135	Synthesis of ABâ€ŧype block copolymers containing benzoxazole and anthracene groups by ATRP and fluorescent property. Journal of Polymer Science Part A, 2007, 45, 3894-3901.	2.5	13
136	Hydrothermal synthesis, structure, and luminescent properties of selected Zn(II)/Cd(ii) coordination polymers constructed from 3,5-bis(x-pyridyl)-1,2,4-triazole (x = 3, 4). Dalton Transactions, 2011, 40, 2805.	1.6	13
137	The synthesis and NLO properties of 1,8-naphthalimide derivatives for both femtosecond and nanosecond laser pulses. Dyes and Pigments, 2012, 94, 271-277.	2.0	13
138	A new DRAM-type memory devices based on polymethacrylate containing pendant 2-methylbenzothiazole. Materials Chemistry and Physics, 2012, 134, 273-278.	2.0	13
139	Initiator-changed memory type: preparation of end-functionalized polymers by ATRP and study of their nonvolatile memory effects. Polymer Chemistry, 2014, 5, 752-760.	1.9	13
140	The Application of a Smallâ€Moleculeâ€Based Ternary Memory Device in Transient Thermalâ€Probing Electronics. Advanced Materials, 2017, 29, 1604162.	11.1	13
141	One‣tep Fabrication of Bio ompatible Coordination Complex Film on Diverse Substrates for Ternary Flexible Memory. Chemistry - A European Journal, 2019, 25, 4808-4813.	1.7	13
142	Conjugated zwitterion-inspired flexible ternary resistive memory from rhodamine dyes. Journal of Materials Chemistry C, 2020, 8, 7658-7662.	2.7	13
143	Third-order nonlinear optical properties of a new type of D–π–D unsymmetrical phenoxazinium chloride with resonance structures. Chemical Physics, 2011, 382, 74-79.	0.9	12
144	A cancer-targetable copolymer containing tyrosine segments for labeling radioactive halogens. Reactive and Functional Polymers, 2011, 71, 390-394.	2.0	12

#	Article	IF	CITATIONS
145	Adjustable third-order nonlinear optical properties of the spin coating phenoxazinium–PMMA films. Materials Chemistry and Physics, 2014, 147, 232-237.	2.0	12
146	The Effect of Random and Block Copolymerization with Pendent Carbozole Donors and Naphthalimide Acceptors on Multilevel Memory Performance. Chemistry - an Asian Journal, 2018, 13, 853-860.	1.7	12
147	Sulfur (VI) Fluoride Exchange Polymerization for Large Conjugate Chromophores and Functional Mainâ€Chain Polysulfates with Nonvolatile Memory Performance. ChemPlusChem, 2018, 83, 407-413.	1.3	12
148	Terminal amino monomethylation-triggered intermolecular H- to J-aggregations to realize tunable memory devices. Journal of Materials Chemistry C, 2019, 7, 4863-4869.	2.7	12
149	Two quinoxaline derivatives designed from isomer chemistry for nonvolatile ternary memory device applications. Dyes and Pigments, 2015, 122, 66-73.	2.0	11
150	Isomerization change and charge trap double mechanisms induced ternary data storage performance. Journal of Materials Chemistry C, 2021, 9, 569-574.	2.7	11
151	Controllable binary/ternary memory behavior induced by isomerization of phenylhydrazone groups in polymer side chains under ultraviolet light conditions. Journal of Materials Chemistry C, 0, , .	2.7	11
152	Influence of coanions on construction of copper(II)/4,4′-dipyridyl sulfide(dps) coordination polymers. Inorganica Chimica Acta, 2009, 362, 3401-3406.	1.2	10
153	Synthesis, characterization and fluorescence adjustment of well-defined polymethacrylates with pendant l̃€-conjugated benzothiazole via atom transfer radical polymerization (ATRP). Polymer, 2009, 50, 4807-4812.	1.8	10
154	Synthesis and fluorescent properties of PAA-based new side chain polymers. Materials Letters, 2004, 58, 3115-3118.	1.3	9
155	Synthesis and Fluorescent Properties of Zn(II) Complex with Functionalized Polystyrene Containing Salicylaldehyde End Group. Polymer Bulletin, 2005, 53, 249-257.	1.7	9
156	Synthesis and Third-order NLO Properties of polymethacrylates containing Pendent Azobenzene Groups. High Performance Polymers, 2007, 19, 356-367.	0.8	9
157	Facile di-color emission tuning of poly[1-(4-vinylstyryl)naphthalene] with naphthalimide end group via ATRP. European Polymer Journal, 2008, 44, 1752-1757.	2.6	9
158	Synthesis of a fluorescent chemosensor based on a new copolymer containing multi-fluorophore. Materials Chemistry and Physics, 2010, 124, 726-731.	2.0	9
159	Third-order nonlinear optical properties of the phenothiazinium chlorides atÂ532nm. Dyes and Pigments, 2011, 89, 70-75.	2.0	9
160	Flash memory effects based on styrene/maleimiade copolymers with pendant azobenzene chromophores. European Polymer Journal, 2011, 47, 1160-1167.	2.6	9
161	A near-infrared phenoxazinium-based fluorescent probe for zinc ions and its imaging in living cells. Sensors and Actuators B: Chemical, 2012, 171-172, 1001-1006.	4.0	9
162	Amphiphilic oligomer-based micelles as cisplatin nanocarriers for cancer therapy. Nanoscale, 2013, 5, 8925.	2.8	9

#	Article	IF	CITATIONS
163	Improving Memory Performances by Adjusting the Symmetry and Polarity of <i>O</i> â€Fluoroazobenzeneâ€Based Molecules. Chemistry - an Asian Journal, 2016, 11, 512-519.	1.7	9
164	Different Stericâ€Twistâ€Induced Ternary Memory Characteristics in Nonconjugated Copolymers with Pendant Naphthalene and 1,8â€Naphthalimide Moieties. Chemistry - an Asian Journal, 2017, 12, 2744-2748.	1.7	9
165	Optical study of poly(3â€decylthiophene)/CdS nanocomposites. Polymer Composites, 2009, 30, 723-730.	2.3	8
166	Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films. Thin Solid Films, 2014, 551, 153-157.	0.8	8
167	Surface Engineering of ITO Substrates to Improve the Memory Performance of an Asymmetric Conjugated Molecule with a Side Chain. Chemistry - an Asian Journal, 2017, 12, 2278-2283.	1.7	8
168	Tunable Electronic Memory Performances Based on Poly(Triphenylamine) and Its Metal Complex via a SuFEx Click Reaction. Chemistry - an Asian Journal, 2019, 14, 4296-4302.	1.7	8
169	Solventâ€Vapor Annealing of Amphiphile/Metal Interface for Orientated Molecular Stacking and Upgraded Resistive Memory Performance. Macromolecular Chemistry and Physics, 2019, 220, 1900334.	1.1	8
170	Tuning of electron density distribution on molecular conjugated skeleton to improve intermolecular aggregation style and device memory performance. Organic Electronics, 2019, 73, 255-260.	1.4	8
171	Polycondensation of sodium tetrazodiphenyl naphthionate and pyromellitic dianhydride under microwave irradiation and the performance of the third-order nonlinear optics. Journal of Applied Polymer Science, 2003, 88, 1121-1128.	1.3	7
172	Atom transfer radical polymerization of a novel quinoline derivative monomer and fluorescent property. European Polymer Journal, 2008, 44, 1874-1880.	2.6	7
173	Devices performance tuned by molecular film-forming properties and electron trap for WORM memory application. Dyes and Pigments, 2012, 95, 365-372.	2.0	7
174	Synthesis, structures and optical properties of coordination compounds bearing N,N-dimethyl-4-(pyridin-4-yldiazenyl) aniline. Polyhedron, 2012, 35, 7-14.	1.0	7
175	Tuning optical properties of phenanthroline derivatives through varying excitation wavelength and pH values. Journal of Materials Chemistry C, 2014, 2, 1539-1544.	2.7	7
176	Different interactions between a metal electrode and an organic layer and their different electrical bistability performances. RSC Advances, 2015, 5, 7083-7089.	1.7	7
177	Towards Highlyâ€Efficient Phototriggered Data Storage by Utilizing a Diketopyrrolopyrroleâ€Based Photoelectronic Small Molecule. Chemistry - an Asian Journal, 2016, 11, 2078-2084.	1.7	7
178	Negative effect on molecular planarity to achieve organic ternary memory: triphenylamine as the spacer. Science China Chemistry, 2016, 59, 692-698.	4.2	7
179	Effects of Single Atom N-Substitution in the Molecular Skeleton on Fabricated Film Quality and Memory Device Performance. Crystal Growth and Design, 2018, 18, 1432-1436.	1.4	7
180	Solvents Effects on Film Morphologies and Memory Behavior of a Perylenediimideâ€Containing Pendent Polymer. Chemistry - an Asian Journal, 2018, 13, 1784-1790.	1.7	7

#	Article	IF	CITATIONS
181	Amorphous Spiroâ€OMeTAD Prepared Flexible Films with Surface Engineering Boost Ternary Resistive Memory Yield to 86%. Advanced Electronic Materials, 2019, 5, 1800964.	2.6	7
182	Effect of fluoropolymer antidripping agent on the microstructure and properties of polyesters. Journal of Polymer Research, 2008, 15, 295-300.	1.2	6
183	Synthesis, characterization, and property of end-functionalized telechelic PST via ATRP. Journal of Applied Polymer Science, 2008, 108, 3430-3434.	1.3	6
184	A novel pH-sensitive polymeric fluorescent probe: Synthesis, characterization and optical properties. Materials Chemistry and Physics, 2010, 120, 614-618.	2.0	6
185	Effects of substituents on the third-order nonlinear optical properties of poly(3-alkoxythiophene) derivatives. Synthetic Metals, 2010, 160, 409-412.	2.1	6
186	Third-order nonlinear optical properties of P3DDT–CdS nanocomposites. Synthetic Metals, 2011, 161, 2441-2445.	2.1	6
187	A salification-induced charge transfer effect for improving the resistive memory performance of azo derivative-based devices. RSC Advances, 2016, 6, 10471-10477.	1.7	6
188	A Novel Batâ€Shaped Dicyanomethyleneâ€4 <i>H</i> â€pyranâ€Functionalized Naphthalimide for Highly Efficient Solutionâ€Processed Multilevel Memory Devices. Chemistry - an Asian Journal, 2017, 12, 1374-1380.	1.7	6
189	Better Organic Ternary Memory Performance through Selfâ€Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces. Chemistry - A European Journal, 2017, 23, 16393-16400.	1.7	6
190	Comprehensive understanding of the structure-stacking property correlation to achieve high-performance ternary data-storage devices. Materials Chemistry Frontiers, 2021, 5, 3176-3183.	3.2	6
191	Nanomicelles Array for Ultrahighâ€Đensity Data Storage. Small, 2022, 18, .	5.2	6
192	Synthesis of oxyquinolyl end-functional PMMA by atom transfer radical polymerization. Polymer Bulletin, 2004, 51, 327-332.	1.7	5
193	Synthesis, characterization, and fluorescence of end-functionalized polystyrene initiated by 4-chloromethyl benzoic acid and ethyl 4-chloromethyl benzenecarboxylate via ATRP. Journal of Applied Polymer Science, 2007, 104, 75-80.	1.3	5
194	Optical Properties of Poly(3-hexylthiophene)/ZnS Nanocomposites. High Performance Polymers, 2009, 21, 48-63.	0.8	5
195	Oxazineâ€thioneâ€based Colorimetric Fluorescent OFFâ€ON Probes for Hg ²⁺ Recognition. Chinese Journal of Chemistry, 2011, 29, 2584-2590.	2.6	5
196	Synthesis and Application of a Full Waterâ€5oluble and Redâ€Emitting Chemosensor Based on Phenoxazinium for Copper(II) Ions. Chinese Journal of Chemistry, 2012, 30, 2303-2308.	2.6	5
197	Synthesis and Morphology of Two Carbazole–Pyrazoline ontaining Polymer Systems and Their Electrical Memory Performance. ChemPlusChem, 2015, 80, 1354-1362.	1.3	5
198	Changing the stability of polymer-based memory devices in high conductivity state via tuning the red-ox property of Hemin. Polymer, 2015, 70, 343-350.	1.8	5

#	Article	IF	CITATIONS
199	The Effect of Annealing Temperature on the Maintenance of the Intermediate Electrical Conductivity State of a Ternaryâ€Polyamideâ€Based Memory Device. Asian Journal of Organic Chemistry, 2017, 6, 598-604.	1.3	5
200	Scaled conductance quantization unravels the switching mechanism in organic ternary resistive memories. Journal of Materials Chemistry C, 2020, 8, 2964-2969.	2.7	5
201	Study of Microwave Irradiation Polymerization in the Presence of Different Carriers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 351-363.	1.2	4
202	Fluorescence Studies on Thiolâ€Functional Polystyreneâ€CdS Nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 45, 37-43.	1.2	4
203	Preparation of a polymer containing indole groups by RAFT polymerization and oneâ€phase synthesis of AuNPsâ€polymer nanocomposites. Journal of Applied Polymer Science, 2013, 129, 2913-2921.	1.3	4
204	Synthesis of Imidazole Derivatives and Study of the ONâ€Based Different Memory Performances. Chemistry - an Asian Journal, 2014, 9, 1950-1956.	1.7	4
205	Altering the Position of Phenyl Substitution to Adjust Film Morphology and Memory Device Performance. Chemistry - an Asian Journal, 2015, 10, 1474-1479.	1.7	4
206	Rational Modification of Small Molecules with High Device Reproducibility Induced by Improved Interfacial Contact through Intermolecular Hydrogen Bonds. ACS Applied Materials & Interfaces, 2019, 11, 37973-37980.	4.0	4
207	Solvent Vapor Annealing Upgraded Orderly Intermolecular Stacking and Crystallinity to Enhance Memory Device Performance. Chemistry - an Asian Journal, 2020, 15, 2493-2498.	1.7	4
208	Construction of polymer materials with specific responses to violet and green lights and their potential applications in an artificial visual memory system. Journal of Materials Chemistry C, 2022, 10, 1653-1659.	2.7	4
209	Nonvolatile WORM memory devices based on polymethacrylate with azoanthraquinone group. Science China Chemistry, 2010, 53, 588-593.	4.2	3
210	pH-responsive polymeric-cargo encapsulated magnetic nanoparticles for selective release and imaging. Journal of Controlled Release, 2011, 152, e67-e68.	4.8	3
211	Electronic memory devices based on the chalcone with negative electrostatic potential regions. Materials Chemistry and Physics, 2013, 142, 363-369.	2.0	3
212	Synthesis of Polystyrene with Terminal Functional Groups via Atom Transfer Radical Polymerization using an Immobilized Catalytic System. High Performance Polymers, 2007, 19, 311-322.	0.8	2
213	Synthesis and Fluorescent Behaviors of Polymers Bearing Stilbene Derivatives. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 343-349.	1.2	2
214	Syntheses, crystal structures and properties of six coordination compounds with flexible dps ligand. Polyhedron, 2011, 30, 997-1003.	1.0	2
215	Decreasing the Energy Consumption of Memory Devices by Enhancing the Conjugation Extent of the Terminal Electronâ€Donating Moieties within Molecules. Chemistry - an Asian Journal, 2015, 10, 461-467.	1.7	2
216	Solvent Vapor Annealing Guides Molecules to Form a Desired Stacking Mode According to the Characteristics of the Molecular Structure. Journal of Physical Chemistry C, 2020, 124, 18868-18876.	1.5	2

#	Article	IF	CITATIONS
217	Layerâ€byâ€Layer Assembly of Monolayer Films Precisely Controlled by LB Technology to Realize Low Energy Consumption and High Stability Ternary Dataâ€Storage Devices. Chemistry - an Asian Journal, 2021, 16, 3951-3956.	1.7	2
218	Synthesis of Novel p-ï€ Conjugated Graft Poly(Amic Acid)s and their Third-Order Nonlinear Optical Properties. High Performance Polymers, 2007, 19, 231-239.	0.8	1
219	Synthesis and optical properties of poly[(4-(benzoxazole-2-yl)phenyl)methyl methacrylate] with 1,8-naphthalimide end group. Science Bulletin, 2009, 54, 59-65.	1.7	1
220	Preparation and fluorescence properties of poly(<i>o</i> â€methylâ€acrylamideylâ€benzoic acid)â€ZnS composites. Journal of Applied Polymer Science, 2010, 118, 1990-1995.	1.3	0
221	Outstanding Mono-Suzuki-Miyaura Coupling Reaction. ChemistryViews, 0, , .	0.0	0