Vahe Bandarian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathways of thymidine hypermodification. Nucleic Acids Research, 2022, 50, 3001-3017.	6.5	12
2	Spectroscopic and Computational Investigation of the Epoxyqueuosine Reductase QueG Reveals Intriguing Similarities with the Reductive Dehalogenase PceA. Biochemistry, 2022, 61, 195-205.	1.2	5
3	Site-Specific Profiling of 4-Thiouridine Across Transfer RNA Genes in <i>Escherichia coli</i> . ACS Omega, 2022, 7, 4011-4025.	1.6	5
4	A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Research, 2022, 50, 7570-7590.	6.5	8
5	Journey on the Radical SAM Road as an Accidental Pilgrim. ACS Bio & Med Chem Au, 2022, 2, 187-195.	1.7	4
6	New developments in RiPP discovery, enzymology and engineering. Natural Product Reports, 2021, 38, 130-239.	5.2	412
7	Eukaryotic TYW1 Is a Radical SAM Flavoenzyme. Biochemistry, 2021, 60, 2179-2185.	1.2	7
8	New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products. Biochemistry, 2021, 60, 3347-3361.	1.2	11
9	Redox Mediated Modifications of tRNA Bases. , 2020, , 442-464.		0
10	Radical SAM Enzymes Involved in Modifications of RiPP Natural Products. , 2020, , 489-519.		2
11	Analysis of Electrochemical Properties of <i>S</i> -Adenosyl- <scp>l</scp> -methionine and Implications for Its Role in Radical SAM Enzymes. Journal of the American Chemical Society, 2019, 141, 11019-11026.	6.6	10
12	Crystal structure of AdoMet radical enzyme 7â€carboxyâ€7â€deazaguanine synthase from <scp><i>Escherichia coli</i></scp> suggests how modifications near [4Fe–4S] cluster engender flavodoxin specificity. Protein Science, 2019, 28, 202-215.	3.1	11
13	A Radical Intermediate in <i>Bacillus subtilis</i> QueE during Turnover with the Substrate Analogue 6-Carboxypterin. Journal of the American Chemical Society, 2018, 140, 1753-1759.	6.6	15
14	Deconvoluting the Reduction Potentials for the Three [4Fe-4S] Clusters in an AdoMet Radical SCIFF Maturase. Biochemistry, 2018, 57, 6050-6053.	1.2	13
15	Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase. Journal of Biological Chemistry, 2018, 293, 17349-17361.	1.6	43
16	Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. Journal of the American Chemical Society, 2018, 140, 6842-6852.	6.6	13
17	A Radical Clock Probe Uncouples H Atom Abstraction from Thioether Cross-Link Formation by the Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme SkfB. Biochemistry, 2018, 57, 4816-4823.	1.2	19

18 Preface. Methods in Enzymology, 2018, 606, xv-xvi.

0.4 0

VAHE BANDARIAN

#	Article	IF	CITATIONS
19	TYW1: A Radical SAM Enzyme Involved in the Biosynthesis of Wybutosine Bases. Methods in Enzymology, 2018, 606, 119-153.	0.4	15
20	QueE: A Radical SAM Enzyme Involved in the Biosynthesis of 7-Deazapurine Containing Natural Products. Methods in Enzymology, 2018, 606, 95-118.	0.4	6
21	Exploring the biosynthesis of hypermodified bases one step at a time. FASEB Journal, 2018, 32, 381.1.	0.2	Ο
22	The Creatininase Homolog MftE from Mycobacterium smegmatis Catalyzes a Peptide Cleavage Reaction in the Biosynthesis of a Novel Ribosomally Synthesized Post-translationally Modified Peptide (RiPP). Journal of Biological Chemistry, 2017, 292, 4371-4381.	1.6	14
23	7-Carboxy-7-deazaguanine Synthase: A Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme with Polar Tendencies. Journal of the American Chemical Society, 2017, 139, 1912-1920.	6.6	30
24	Human Viperin Causes Radical SAM-Dependent Elongation of <i>Escherichia coli</i> , Hinting at Its Physiological Role. Biochemistry, 2017, 56, 3874-3876.	1.2	12
25	Molecular basis of cobalamin-dependent RNA modification. Nucleic Acids Research, 2016, 44, gkw806.	6.5	29
26	A Protein-derived Oxygen Is the Source of the Amide Oxygen of Nitrile Hydratases. Journal of Biological Chemistry, 2016, 291, 7822-7829.	1.6	6
27	The Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the MftA Peptide. Biochemistry, 2016, 55, 2813-2816.	1.2	52
28	SkfB Abstracts a Hydrogen Atom from C _α on SkfA To Initiate Thioether Cross-Link Formation. Biochemistry, 2016, 55, 4131-4134.	1.2	31
29	An informatic framework for decoding protein complexes by top-down mass spectrometry. Nature Methods, 2016, 13, 237-240.	9.0	59
30	Biochemical and Spectroscopic Characterization of a Radical <i>S</i> -Adenosyl- <scp>l</scp> -methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link. Biochemistry, 2016, 55, 2122-2134.	1.2	55
31	Radical-mediated ring contraction in the biosynthesis of 7-deazapurines. Current Opinion in Structural Biology, 2015, 35, 116-124.	2.6	15
32	A Single Enzyme Transforms a Carboxylic Acid into a Nitrile through an Amide Intermediate. Angewandte Chemie - International Edition, 2015, 54, 10627-10629.	7.2	29
33	Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders. Journal of Biological Chemistry, 2015, 290, 10994-11007.	1.6	34
34	Refining the Structural Model of a Heterohexameric Protein Complex: Surface Induced Dissociation and Ion Mobility Provide Key Connectivity and Topology Information. ACS Central Science, 2015, 1, 477-487.	5.3	57
35	Mechanistic Studies of the Radical <i>S-</i> Adenosyl- <scp>l</scp> -methionine Enzyme 4-Demethylwyosine Synthase Reveal the Site of Hydrogen Atom Abstraction. Biochemistry, 2015, 54, 3569-3572.	1.2	14
36	Biochemical and Spectroscopic Studies of Epoxyqueuosine Reductase: A Novel Iron–Sulfur Cluster- and Cobalamin-Containing Protein Involved in the Biosynthesis of Queuosine. Biochemistry, 2015, 54, 4927-4935.	1.2	27

VAHE BANDARIAN

#	Article	IF	CITATIONS
37	Chemical and Biological Reduction of the Radical SAM Enzyme CPH ₄ Synthase. Biochemistry, 2015, 54, 2903-2910.	1.2	31
38	Investigation of the Radical SAM Enzyme CDG Synthase. FASEB Journal, 2015, 29, 572.12.	0.2	0
39	B 12 in a New Light: Queuosine tRNA Modification. FASEB Journal, 2015, 29, 573.38.	0.2	Ο
40	Biochemical and Structural Studies of 6-Carboxy-5,6,7,8-tetrahydropterin Synthase Reveal the Molecular Basis of Catalytic Promiscuity within the Tunnel-fold Superfamily. Journal of Biological Chemistry, 2014, 289, 23641-23652.	1.6	21
41	The Alpha Subunit of Nitrile Hydratase Is Sufficient for Catalytic Activity and Post-Translational Modification. Biochemistry, 2014, 53, 3990-3994.	1.2	24
42	Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nature Chemical Biology, 2014, 10, 106-112.	3.9	71
43	Radical mediated ring formation in the biosynthesis of the hypermodified tRNA base wybutosine. Current Opinion in Chemical Biology, 2013, 17, 613-618.	2.8	22
44	Spectroscopic, Steady-State Kinetic, and Mechanistic Characterization of the Radical SAM Enzyme QueE, Which Catalyzes a Complex Cyclization Reaction in the Biosynthesis of 7-Deazapurines. Biochemistry, 2013, 52, 188-198.	1.2	67
45	Phospholipase D Toxins of Brown Spider Venom Convert Lysophosphatidylcholine and Sphingomyelin to Cyclic Phosphates. PLoS ONE, 2013, 8, e72372.	1.1	43
46	Novel enzymatic transformations in secondary metabolism and tRNA modification. FASEB Journal, 2013, 27, 337.1.	0.2	0
47	Radical SAM enzymes involved in the biosynthesis of purine-based natural products. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1245-1253.	1.1	22
48	Biosynthesis of pyrrolopyrimidines. Bioorganic Chemistry, 2012, 43, 15-25.	2.0	67
49	Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation. Journal of Biological Chemistry, 2011, 286, 24626-24637.	1.6	114
50	Revealing the Quaternary Structure of a Heterogeneous Noncovalent Protein Complex through Surface-Induced Dissociation. Analytical Chemistry, 2011, 83, 2862-2865.	3.2	78
51	Pyruvate Is the Source of the Two Carbons That Are Required for Formation of the Imidazoline Ring of 4-Demethylwyosine. Biochemistry, 2011, 50, 10573-10575.	1.2	40
52	Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7368-7372.	3.3	87
53	The Structural Basis for Recognition of the PreQ0 Metabolite by an Unusually Small Riboswitch Aptamer Domain. Journal of Biological Chemistry, 2009, 284, 11012-11016.	1.6	93
54	<i>Escherichia coli</i> QueD Is a 6-Carboxy-5,6,7,8-tetrahydropterin Synthase. Biochemistry, 2009, 48, 2301-2303.	1.2	50

VAHE BANDARIAN

#	Article	IF	CITATIONS
55	The Deazapurine Biosynthetic Pathway Revealed: In Vitro Enzymatic Synthesis of PreQ ₀ from Guanosine 5′-Triphosphate in Four Steps. Biochemistry, 2009, 48, 3847-3852.	1.2	96
56	Deciphering Deazapurine Biosynthesis: Pathway for Pyrrolopyrimidine Nucleosides Toyocamycin and Sangivamycin. Chemistry and Biology, 2008, 15, 790-798.	6.2	77
57	Delivery of tailor-made cobalamin to methylmalonyl-CoA mutase. Nature Chemical Biology, 2008, 4, 158-159.	3.9	0
58	The Copper-Inducible cin Operon Encodes an Unusual Methionine-Rich Azurin-Like Protein and a Pre-Q0 Reductase in Pseudomonas putida KT2440. Journal of Bacteriology, 2007, 189, 5361-5371.	1.0	31
59	Probing Nitrogen-Sensitive Steps in the Free-Radical-Mediated Deamination of Amino Alcohols by Ethanolamine Ammonia-Lyase. Journal of the American Chemical Society, 2006, 128, 7120-7121.	6.6	12
60	Functions of three GTP cyclohydrolase II proteins of S. coelicolor. FASEB Journal, 2006, 20, LB54.	0.2	0
61	Measurement of Energetics of Conformational Change in Cobalamin-Dependent Methionine Synthase. Methods in Enzymology, 2004, 380, 152-169.	0.4	15
62	Cobalamin-Dependent and Cobalamin-Independent Methionine Synthases: Are There Two Solutions to the Same Chemical Problem?. Helvetica Chimica Acta, 2003, 86, 3939-3954.	1.0	54
63	Factors modulating conformational equilibria in large modular proteins: A case study with cobalamin-dependent methionine synthase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8156-8163.	3.3	68
64	Inhibition of Lysine 2,3-Aminomutase by the Alternative Substrate 4-Thialysine and Characterization of the 4-Thialysyl Radical Intermediate. Archives of Biochemistry and Biophysics, 2001, 387, 281-288.	1.4	36
65	Characterization of a Unique Coenzyme B6 Radical in the Ascarylose Biosynthetic Pathway. Journal of the American Chemical Society, 2000, 122, 4239-4240.	6.6	23
66	Ethanolamine Ammonia-Lyase Has a "Base-On―Binding Mode for Coenzyme B12. Archives of Biochemistry and Biophysics, 1999, 370, 138-141.	1.4	64
67	Dioldehydratase Binds Coenzyme B12 in the "Base-On―Mode: ESR Investigations on Cob(II)alamin. Angewandte Chemie - International Edition, 1998, 37, 625-627.	7.2	50
68	Spectroelectrochemical Characterization of the Metal Centers in Carbon Monoxide Dehydrogenase (CODH) and Nickel-deficient CODH from Rhodospirillum rubrum. Journal of Biological Chemistry, 1996, 271, 7973-7977.	1.6	34
69	Metabolite Activation of Crassulacean Acid Metabolism and C4 Phosphoenolpyruvate Carboxylase. Plant Physiology, 1992, 100, 1411-1416.	2.3	19