
Daniela Iacopino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8283169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-Induced Graphene Supercapacitors by Direct Laser Writing of Cork Natural Substrates. ACS Applied Electronic Materials, 2022, 4, 1541-1551.	2.0	28
2	Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase. Talanta, 2022, 246, 123492.	2.9	20
3	Direct-write formation of integrated bottom contacts to laser-induced graphene-like carbon. Nanotechnology, 2022, 33, 405204.	1.3	1
4	Design of Experiments and Optimization of Laser-Induced Graphene. ACS Omega, 2021, 6, 16736-16743.	1.6	24
5	A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing. Sensors, 2021, 21, 4903.	2.1	21
6	Laser Scribing Fabrication of Graphitic Carbon Biosensors for Label-Free Detection of Interleukin-6. Nanomaterials, 2021, 11, 2110.	1.9	14
7	A Museum Artefact Monitoring Testbed using LoRaWAN. , 2021, , .		4
8	Fabrication and Electrochemical Properties of Three-Dimensional (3D) Porous Graphitic and Graphenelike Electrodes Obtained by Low-Cost Direct Laser Writing Methods. ACS Omega, 2020, 5, 1540-1548.	1.6	35
9	Characterization of contemporary and historical acrylonitrile butadiene styrene (ABS)-based objects: Pilot study for handheld Raman analysis in collections. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118733.	2.0	15
10	Visible Laser Scribing Fabrication of Porous Graphitic Carbon Electrodes: Morphologies, Electrochemical Properties, and Applications as Disposable Sensor Platforms. ACS Applied Electronic Materials, 2020, 2, 3279-3288.	2.0	22
11	Handheld surfaceâ€enhanced Raman scattering identification of dye chemical composition in feltâ€ŧip pen drawings. Journal of Raman Spectroscopy, 2019, 50, 222-231.	1.2	11
12	Fabrication of transparent composites for non-invasive Surface Enhanced Raman Scattering (SERS) analysis of modern art works. Heritage Science, 2019, 7, .	1.0	7
13	Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS) for the Analysis of Blue and Black Writing Inks: Identification of Dye Content and Degradation Processes. Frontiers in Chemistry, 2019, 7, 727.	1.8	14
14	Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta, 2019, 201, 58-64.	2.9	70
15	Identification of dye content in colored BIC ballpoint pen inks by Raman spectroscopy and surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2019, 50, 115-126.	1.2	19
16	A combined Surface Enhanced Raman Spectroscopy (SERS)/UV–vis approach for the investigation of dye content in commercial felt tip pens inks. Talanta, 2018, 181, 448-453.	2.9	17
17	Plasmonic colloidal pastes for surface-enhanced Raman spectroscopy (SERS) of historical felt-tip pens. RSC Advances, 2018, 8, 8365-8371.	1.7	9
18	Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods. Science and Technology of Advanced Materials, 2017, 18, 60-67.	2.8	23

DANIELA IACOPINO

#	Article	IF	CITATIONS
19	Metal nanoinks as chemically stable surface enhanced scattering (SERS) probes for the analysis of blue BIC ballpoint pens. Physical Chemistry Chemical Physics, 2017, 19, 14652-14658.	1.3	14
20	Gate-controlled heat generation in ZnO nanowire FETs. Physical Chemistry Chemical Physics, 2017, 19, 14042-14047.	1.3	2
21	Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens. AlP Conference Proceedings, 2017, , .	0.3	3
22	Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures. Crystals, 2016, 6, 117.	1.0	6
23	A Combined Fluidic Force-Magnetic Field Driven Self-Assembly Technique to Yield Fully Functional Single Nanowire Electroanalytical Devices. Journal of the Electrochemical Society, 2016, 163, B335-B339.	1.3	1
24	Direct Observation of Mercury Amalgamation on Individual Gold Nanorods Using Spectroelectrochemistry. Journal of Physical Chemistry C, 2016, 120, 19295-19301.	1.5	30
25	Non-resonant Raman spectroscopy of individual ZnO nanowires via Au nanorod surface plasmons. Journal of Materials Chemistry C, 2016, 4, 1651-1657.	2.7	7
26	Investigation of Au–Hg amalgam formation on substrate-immobilized individual Au nanorods. Journal of Materials Chemistry C, 2015, 3, 8865-8872.	2.7	29
27	Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. Journal of Materials Chemistry C, 2015, 3, 11785-11800.	2.7	42
28	Polarization dependent, surface plasmon induced photoconductance in gold nanorod arrays. Physica Status Solidi - Rapid Research Letters, 2014, 8, 264-268.	1.2	10
29	Gold Nanowire Electrode Arrays: Investigations of Non-Faradaic Behavior. Journal of the Electrochemical Society, 2014, 161, B3049-B3054.	1.3	8
30	Synthesis, optical properties and alignment of poly(9,9-dioctylfuorene) nanofibers. Nanotechnology, 2014, 25, 435607.	1.3	7
31	Au nanorod plasmonic superstructures obtained by a combined droplet evaporation and stamping method. Journal of Materials Chemistry C, 2014, 2, 3536-3541.	2.7	8
32	Controlled assembly of Au nanorods into 1D architectures by electric field assisted deposition. Journal of Materials Chemistry C, 2014, 2, 6810.	2.7	6
33	Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Au Nanorod Ordered Arrays. Journal of Physical Chemistry C, 2014, 118, 13260-13267.	1.5	36
34	Hot-Electron Injection in Au Nanorod–ZnO Nanowire Hybrid Device for Near-Infrared Photodetection. Nano Letters, 2014, 14, 6202-6209.	4.5	141
35	Facile Formation of Ordered Vertical Arrays by Droplet Evaporation of Au Nanorod Organic Solutions. Langmuir, 2014, 30, 10206-10212.	1.6	36
36	Using spectral analysis and fluorescence lifetimes to discriminate between grass and tree pollen for aerobiological applications. Analytical Methods, 2014, 6, 1633-1639.	1.3	17

DANIELA IACOPINO

#	Article	IF	CITATIONS
37	Highly Polarized Luminescence from β-Phase-Rich Poly(9,9-dioctylfluorene) Nanofibers. Journal of Physical Chemistry A, 2014, 118, 5437-5442.	1.1	9
38	Flexible SERS active substrates from ordered vertical Au nanorod arrays. RSC Advances, 2014, 4, 20038.	1.7	34
39	Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals. Nanoscale, 2013, 5, 239-245.	2.8	11
40	Gold Nanoparticles and Oxidative Stress in the Blue Mussel, Mytilus edulis. Methods in Molecular Biology, 2013, 1028, 197-203.	0.4	4
41	Synthesis, optical properties and self-assembly of gold nanorods. Journal of Experimental Nanoscience, 2012, 7, 688-702.	1.3	11
42	Reversible modulation of photoluminescence from conjugated polymer nanotubes by incorporation of photochromic spirooxazine molecules. Chemical Communications, 2011, 47, 9170.	2.2	15
43	Planarized and Nanopatterned Mesoporous Silica Thin Films by Chemical-Mechanical Polishing of Gap-Filled Topographically Patterned Substrates. IEEE Nanotechnology Magazine, 2011, 10, 451-461.	1.1	3
44	Dielectrophoretic self-assembly of polarized light emitting poly(9,9-dioctylfluorene) nanofibre arrays. Nanotechnology, 2011, 22, 105602.	1.3	24
45	Multi-colour emission from dye doped polymeric nanotubes by host–guest energy transfer. Journal of Materials Chemistry, 2011, 21, 15995.	6.7	14
46	Dielectrophoretic Self-Assembly of Au Nanorods for Sensing Applications. Journal of Physics: Conference Series, 2011, 307, 012051.	0.3	4
47	The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmospheric Environment, 2011, 45, 6451-6458.	1.9	71
48	Optical Properties of Micro-patterned Silver Nanoparticle Substrates. Journal of Fluorescence, 2010, 20, 215-223.	1.3	9
49	The incorporation of preformed metal nanoparticles in zinc oxide thin films using aerosol assisted chemical vapour deposition. Thin Solid Films, 2010, 518, 6921-6926.	0.8	21
50	Ion-Transfer Electrochemistry at Arrays of Nanointerfaces between Immiscible Electrolyte Solutions Confined within Silicon Nitride Nanopore Membranes. Analytical Chemistry, 2010, 82, 6115-6123.	3.2	55
51	Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 459-465.	1.1	15
52	Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends. Physical Chemistry Chemical Physics, 2010, 12, 13047.	1.3	33
53	Luminescent Conjugated Polymer Nanowire Yâ€Junctions with Onâ€Branch Molecular Anisotropy. Advanced Materials, 2009, 21, 1160-1165.	11.1	23
54	Enhanced photoluminescence from metals and nanoimprinted photonic crystals. , 2009, , .		0

DANIELA IACOPINO

#	Article	IF	CITATIONS
55	Poly(9,9â€dioctylfluorene) Nanowires with Pronounced βâ€Phase Morphology: Synthesis, Characterization, and Optical Properties. Advanced Materials, 2008, 20, 42-48.	11.1	109
56	Alignment and Dynamic Manipulation of Conjugated Polymer Nanowires in Nematic Liquid Crystal Hosts. Advanced Materials, 2008, 20, 2497-2502.	11.1	54
57	Template Synthesis of Highly Oriented Polyfluorene Nanotube Arrays. Chemistry of Materials, 2008, 20, 996-1003.	3.2	42
58	Probe based manipulation and assembly of nanowires into organized mesostructures. Nanotechnology, 2008, 19, 485301.	1.3	13
59	A Flexible Method for the Fabrication of Gold Nanostructures Using Oligonucleotide Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1605-1609.	0.4	1
60	Synthesis of Pentacene Nanotubes by Melt-Assisted Template Wetting. Chemistry of Materials, 2007, 19, 338-340.	3.2	35
61	Emission Colour Tuning in Semiconducting Polymer Nanotubes by Energy Transfer to Organo― Lanthanide Dopants. Advanced Materials, 2007, 19, 2474-2479.	11.1	36
62	Oriented Growth of Single-Crystalline Bi2S3 Nanowire Arrays. ChemPhysChem, 2007, 8, 235-240.	1.0	32
63	Polythiophene mesowires: synthesis by template wetting and local electrical characterisation of single wires. Journal of Materials Chemistry, 2006, 16, 3237.	6.7	31
64	Microporous silicon and biosensor development: structural analysis, electrical characterisation and biocapacity evaluation. Biosensors and Bioelectronics, 2005, 21, 282-292.	5.3	23
65	Manipulating the Charging Energy of Nanocrystal Arrays. Small, 2005, 1, 613-618.	5.2	32
66	DNA-Templated Assembly of Conducting Gold Nanowires between Gold Electrodes on a Silicon Oxide Substrate. Chemistry of Materials, 2005, 17, 1959-1964.	3.2	99
67	Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam. Journal of Applied Physics, 2004, 96, 3458-3462.	1.1	100
68	DNA-Templated Assembly of a Protein-Functionalized Nanogap Electrode. Advanced Materials, 2004, 16, 1799-1803.	11.1	35
69	Synthesis of Branched Oligonucleotides as Templates for the Assembly of Nanomaterials. Helvetica Chimica Acta, 2003, 86, 2814-2826.	1.0	22
70	Imaging the DNA and nanoparticle components of a self-assembled nanoscale architecture. Nanotechnology, 2003, 14, 447-452.	1.3	22
71	Metal(II) binding ability of a novel N-protected amino acid. A solution-state investigation on binary and ternary complexes with 2,2′-bipyridine. Journal of Inorganic Biochemistry, 2000, 78, 355-361.	1.5	13
72	Binding ability of aldaric acid toward metal(II). X-ray study and solution state investigation on Cu(II)-galactaric acid system and its 2,2′-bypiridine adduct. Inorganica Chimica Acta, 1999, 292, 189-197.	1.2	23

#	Article	IF	CITATIONS
73	Electrochemically Switched Anion Translocation in a Multicomponent Coordination Compound. Inorganic Chemistry, 1997, 36, 827-832.	1.9	45