Jose L Lanciego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282981/publications.pdf

Version: 2024-02-01

50244 62565 7,320 128 46 80 citations h-index g-index papers 130 130 130 9017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in a mouse model of acute intermittent porphyria. Science Translational Medicine, 2022, 14, eabc0700.	5.8	9
2	Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines, 2022, 10, 746.	1.4	4
3	Glucocerebrosidase Gene Therapy Induces Alpha-Synuclein Clearance and Neuroprotection of Midbrain Dopaminergic Neurons in Mice and Macaques. International Journal of Molecular Sciences, 2021, 22, 4825.	1.8	18
4	Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines. Biology, 2021, 10, 467.	1.3	7
5	Adeno-Associated Viral Vectors as Versatile Tools for Parkinson's Research, Both for Disease Modeling Purposes and for Therapeutic Uses. International Journal of Molecular Sciences, 2021, 22, 6389.	1.8	12
6	An ACE2/Mas-related receptor MrgE axis in dopaminergic neuron mitochondria. Redox Biology, 2021, 46, 102078.	3.9	19
7	Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. Brain Structure and Function, 2020, 225, 2153-2164.	1.2	12
8	Brain ventricular enlargement in human and murine acute intermittent porphyria. Human Molecular Genetics, 2020, 29, 3211-3223.	1.4	3
9	Expression of cannabinoid CB 1 R–GPR55 heteromers in neuronal subtypes of the Macaca fascicularis striatum. Annals of the New York Academy of Sciences, 2020, 1475, 34-42.	1.8	4
10	Neuroanatomical tract-tracing techniques that did go viral. Brain Structure and Function, 2020, 225, 1193-1224.	1.2	59
11	Targeting CB1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson's Disease. Molecular Neurobiology, 2019, 56, 5900-5910.	1.9	22
12	Glucocerebrosidase mutations and synucleinopathies: Toward a model of precision medicine. Movement Disorders, 2019, 34, 9-21.	2.2	73
13	Cx3cr1â€deficiency exacerbates alphaâ€synucleinâ€A53T induced neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Glia, 2018, 66, 1752-1762.	2.5	46
14	Alterations in Gene and Protein Expression of Cannabinoid CB2 and GPR55 Receptors in the Dorsolateral Prefrontal Cortex of Suicide Victims. Neurotherapeutics, 2018, 15, 796-806.	2.1	44
15	Cannabinoid CB1 and CB2ÂReceptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson's Disease. Neurotherapeutics, 2018, 15, 459-469.	2.1	65
16	Gene therapy approaches in the non-human primate model of Parkinson's disease. Journal of Neural Transmission, 2018, 125, 575-589.	1.4	20
17	Paracrine and Intracrine Angiotensin 1-7/Mas Receptor Axis in the Substantia Nigra of Rodents, Monkeys, and Humans. Molecular Neurobiology, 2018, 55, 5847-5867.	1.9	62
18	Glucocerebrosidase expression patterns in the non-human primate brain. Brain Structure and Function, 2018, 223, 343-355.	1.2	9

#	Article	IF	Citations
19	Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain, Behavior, and Immunity, 2018, 67, 139-151.	2.0	99
20	History and future challenges of the subthalamic nucleus as surgical target: Review article. Movement Disorders, 2018, 33, 1540-1550.	2.2	21
21	Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes. Frontiers in Neuroanatomy, 2018, 12, 52.	0.9	19
22	Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death. Neurotherapeutics, 2018, 15, 1063-1081.	2.1	59
23	Usefulness of identifying G-protein-coupled receptor dimers for diagnosis and therapy of neurodegenerative diseases and of gliomas. Histology and Histopathology, 2018, 33, 909-917.	0.5	1
24	Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Structure and Function, 2017, 222, 2559-2571.	1.2	44
25	AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Molecular Therapy, 2017, 25, 2727-2742.	3.7	98
26	Neurochemical evidence supporting dopamine D1–D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Structure and Function, 2017, 222, 1767-1784.	1.2	58
27	Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2017, 8, 744.	1.6	134
28	Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 129.	1.7	172
29	Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Frontiers in Neuroanatomy, $2017, 11, 2$.	0.9	36
30	Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Frontiers in Pharmacology, 2016, 7, 76.	1.6	98
31	Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid <scp>cGMP</scp> levels. Journal of Neurochemistry, 2016, 136, 403-415.	2.1	41
32	Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 580-587.	1.3	20
33	Increased vulnerability to ethanol consumption in adolescent maternal separated mice. Addiction Biology, 2016, 21, 847-858.	1.4	33
34	99. Construction and Evaluation of Recombinant AAV Vectors for Central Nervous System Gene Delivery. Molecular Therapy, 2016, 24, S43.	3.7	0
35	370. Reconstruction of the Nigrostriatal Pathway in Parkinsonian Macaques. Molecular Therapy, 2016, 24, S148.	3.7	0
36	Disruption of a dopamine receptor complex amplifies the actions of cocaine. European Neuropsychopharmacology, 2016, 26, 1366-1377.	0.3	36

#	Article	IF	Citations
37	Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys. Biomaterials, 2016, 110, 11-23.	5.7	58
38	Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death and Disease, 2016, 7, e2427-e2427.	2.7	87
39	Hints on the Lateralization of Dopamine Binding to D1 Receptors in Rat Striatum. Molecular Neurobiology, 2016, 53, 5436-5445.	1.9	7
40	Midbrain catecholaminergic neurons co-express α-synuclein and tau in progressive supranuclear palsy. Frontiers in Neuroanatomy, 2015, 9, 25.	0.9	6
41	Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey. Frontiers in Neuroanatomy, 2015, 9, 28.	0.9	5
42	Editorial: Parkinson's disease: cell vulnerability and disease progression. Frontiers in Neuroanatomy, 2015, 9, 125.	0.9	11
43	Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Frontiers in Systems Neuroscience, 2015, 9, 51.	1.2	40
44	Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochemical Pharmacology, 2015, 96, 131-142.	2.0	59
45	Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiology of Aging, 2015, 36, 1194-1208.	1.5	32
46	Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Structure and Function, 2015, 220, 2721-2738.	1.2	82
47	Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Molecular Neurobiology, 2015, 52, 1408-1420.	1.9	49
48	Retrograde Tract-Tracing "Plus― Adding Extra Value to Retrogradely Traced Neurons. Neuromethods, 2015, , 67-84.	0.2	1
49	Classic and Contemporary Neural Tract-Tracing Techniques. , 2014, , 359-399.		11
50	Striatal vessels receive phosphorylated tyrosine hydroxylase-rich innervation from midbrain dopaminergic neurons. Frontiers in Neuroanatomy, 2014, 8, 84.	0.9	20
51	Calbindin content and differential vulnerability of midbrain efferent dopaminergic neurons in macaques. Frontiers in Neuroanatomy, 2014, 8, 146.	0.9	45
52	GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells. Hippocampus, 2014, 24, 733-739.	0.9	46
53	Gâ€Proteinâ€Coupled Receptor Heteromers as Key Players in the Molecular Architecture of the Central Nervous System. CNS Neuroscience and Therapeutics, 2014, 20, 703-709.	1.9	23
54	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	0.9	31

#	Article	IF	Citations
55	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	2.0	83
56	P.6.a.009 Increased ethanol self-administration associated with synaptic plasticity alterations induced by early life stress in mice. European Neuropsychopharmacology, 2014, 24, S657-S658.	0.3	0
57	CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Experimental Neurology, 2014, 261, 44-52.	2.0	73
58	Phosphodiesterase Inhibition in Cognitive Decline. Journal of Alzheimer's Disease, 2014, 42, S561-S573.	1.2	24
59	I-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	2.0	77
60	Two types of periglomerular cells in the olfactory bulb of the macaque monkey (Macaca fascicularis). Brain Structure and Function, 2013, 218, 873-887.	1.2	8
61	Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin–angiotensin system in the nigra. Brain Structure and Function, 2013, 218, 373-388.	1.2	87
62	Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age, 2013, 35, 1675-1690.	3.0	32
63	Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease. Neurobiology of Disease, 2013, 58, 209-219.	2.1	62
64	Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology, 2013, 64, 114-123.	2.0	143
65	Functional Neuroanatomy of the Basal Ganglia. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009621-a009621.	2.9	511
66	Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. Journal of Biological Chemistry, 2012, 287, 20851-20865.	1.6	196
67	Loss of Parvalbumin-Positive Neurons From the Globus Pallidus in Animal Models of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 973-982.	0.9	16
68	Basal Ganglia Circuits: What's Now and Next?. Frontiers in Neuroanatomy, 2012, 6, 4.	0.9	3
69	The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Structure and Function, 2012, 217, 613-666.	1.2	41
70	Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB). Neurobiology of Disease, 2012, 47, 347-357.	2.1	4
71	A half century of experimental neuroanatomical tracing. Journal of Chemical Neuroanatomy, 2011, 42, 157-183.	1.0	187
72	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease., 2011, 132, 280-299.		170

#	Article	IF	Citations
73	Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism. Brain Structure and Function, 2011, 216, 319-330.	1.2	24
74	Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Structure and Function, 2011, 216, 371-386.	1.2	6
75	Longâ€term neuroprotection and neurorestoration by glial cellâ€derived neurotrophic factor microspheres for the treatment of Parkinson's disease. Movement Disorders, 2011, 26, 1943-1947.	2.2	39
76	Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of <i>Macaca fascicularis </i> . Journal of Psychopharmacology, 2011, 25, 97-104.	2.0	120
77	Adeno-Associated Virus Liver Transduction Efficiency Measured by <i>in Vivo</i> [¹⁸ F]FHBG Positron Emission Tomography Imaging in Rodents and Nonhuman Primates. Human Gene Therapy, 2011, 22, 999-1009.	1.4	14
78	Past, Present, and Future of the Pathophysiological Model of the Basal Ganglia. Frontiers in Neuroanatomy, 2011, 5, 39.	0.9	42
79	Location of Prorenin Receptors in Primate Substantia Nigra: Effects on Dopaminergic Cell Death. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1130-1142.	0.9	44
80	Production of highly pure human glycosylated GDNF in a mammalian cell line. International Journal of Pharmaceutics, 2010, 385, 6-11.	2.6	10
81	A direct projection from the subthalamic nucleus to the ventral thalamus in monkeys. Neurobiology of Disease, 2010, 39, 381-392.	2.1	36
82	Neuroanatomical tracing combined with in situ hybridization: Analysis of gene expression patterns within brain circuits of interest. Journal of Neuroscience Methods, 2010, 194, 28-33.	1.3	13
83	The added value of rabies virus as a retrograde tracer when combined with dual anterograde tract-tracing. Journal of Neuroscience Methods, 2010, 194, 21-27.	1.3	11
84	Prime Time for G-Protein-Coupled Receptor Heteromers as Therapeutic Targets for CNS disorders: The Dopamine D1-D3 Receptor Heteromer. CNS and Neurological Disorders - Drug Targets, 2010, 9, 596-600.	0.8	23
85	Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Experimental Neurology, 2010, 224, 517-526.	2.0	60
86	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	1.6	65
87	Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson's disease. Neurobiology of Disease, 2009, 34, 545-552.	2.1	59
88	Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiology of Disease, 2009, 36, 494-508.	2.1	57
89	Effective GDNF brain delivery using microspheres—A promising strategy for Parkinson's disease. Journal of Controlled Release, 2009, 135, 119-126.	4.8	131
90	Localization of relaxinâ€3 in brain of <i>Macaca fascicularis</i> ldentification of a nucleus incertus in primate. Journal of Comparative Neurology, 2009, 517, 856-872.	0.9	64

#	Article	lF	CITATIONS
91	Distribution of Relaxinâ€3 mRNA and Immunoreactivity and RXFP3â€Binding Sites in the Brain of the Macaque, <i>Macaca fascicularis</i> . Annals of the New York Academy of Sciences, 2009, 1160, 256-258.	1.8	25
92	The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease. Brain Research Bulletin, 2009, 78, 55-59.	1.4	24
93	Classic and Contemporary Neural Tract Tracing Techniques. , 2009, , 272-308.		8
94	P3.068 Basal ganglia hyperindirect pathway: direct projections from the subthalamic nucleus innervating the ventral motor thalamic nuclei in MPTP-treated primates. Parkinsonism and Related Disorders, 2009, 15, S166.	1.1	0
95	Lesion of the centromedian thalamic nucleus in MPTPâ€treated monkeys. Movement Disorders, 2008, 23, 708-715.	2.2	29
96	Origin of calretininâ€containing, vesicular glutamate transporter 2â€coexpressing fiber terminals in the entorhinal cortex of the rat. Journal of Comparative Neurology, 2008, 506, 359-370.	0.9	21
97	Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. European Journal of Neuroscience, 2008, 27, 2313-2321.	1.2	76
98	High-resolution neuroanatomical tract-tracing for the analysis of striatal microcircuits. Brain Research, 2008, 1221, 49-58.	1.1	21
99	Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease. Neurobiology of Disease, 2008, 31, 422-432.	2.1	27
100	Ischemia induces cell proliferation and neurogenesis in the gerbil hippocampus in response to neuronal death. Neuroscience Research, 2008, 61, 27-37.	1.0	42
101	Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. Journal of Chemical Neuroanatomy, 2008, 35, 101-107.	1.0	47
102	Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 844-851.	2.0	50
103	Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. Journal of Comparative Neurology, 2007, 501, 703-715.	0.9	106
104	Purification of bioactive glycosylated recombinant glial cell line-derived neurotrophic factor. International Journal of Pharmaceutics, 2007, 344, 9-15.	2.6	21
105	Detection of two different mRNAs in a single section by dual in situ hybridization: A comparison between colorimetric and fluorescent detection. Journal of Neuroscience Methods, 2007, 162, 119-128.	1.3	44
106	The number of dopaminergic cells is increased in the olfactory bulb of monkeys chronically exposed to MPTP. Synapse, 2007, 61, 1006-1012.	0.6	32
107	Multiple Neuroanatomical Tract-Tracing: Approaches for Multiple Tract-Tracing. , 2006, , 336-365.		11
108	Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. European Journal of Neuroscience, 2006, 23, 2099-2108.	1.2	75

#	Article	IF	CITATIONS
109	â€~Functional' neuroanatomical tract tracing: Analysis of changes in gene expression of brain circuits of interest. Brain Research, 2006, 1072, 91-98.	1.1	12
110	Striatal expression of GDNF and differential vulnerability of midbrain dopaminergic cells. European Journal of Neuroscience, 2005, 21, 1815-1827.	1.2	74
111	Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections. Journal of Comparative Neurology, 2005, 483, 143-153.	0.9	85
112	Intralaminar Thalamic Nuclei are Main Regulators of Basal Ganglia., 2005,, 331-339.		2
113	Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. European Journal of Neuroscience, 2004, 19, 1267-1277.	1.2	67
114	How does Parkinson's disease begin? The role of compensatory mechanisms. Trends in Neurosciences, 2004, 27, 125-127.	4.2	65
115	Re-examination of the thalamostriatal projections in the rat with retrograde tracers. Neuroscience Research, 2002, 42, 45-55.	1.0	61
116	Striatal input from the ventrobasal complex of the rat thalamus. Histochemistry and Cell Biology, 2001, 115, 447-454.	0.8	23
117	A sequential protocol combining dual neuroanatomical tract-tracing with the visualization of local circuit neurons within the striatum. Journal of Neuroscience Methods, 2001, 111, 59-66.	1.3	11
118	Neuroanatomical tract-tracing methods beyond 2000: what's now and next. Journal of Neuroscience Methods, 2000, 103, 1-2.	1.3	18
119	Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section. Journal of Neuroscience Methods, 2000, 103, 127-135.	1.3	33
120	Current concepts in neuroanatomical tracing. Progress in Neurobiology, 2000, 62, 327-351.	2.8	644
121	Pathophysiology of the basal ganglia in Parkinson's disease. Trends in Neurosciences, 2000, 23, S8-S19.	4.2	702
122	Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Experimental Brain Research, 1999, 127, 162-170.	0.7	69
123	Notes on the combined use of V-VIP and DAB peroxidase substrates for the detection of colocalising antigens. Histochemistry and Cell Biology, 1999, 111, 305-311.	0.8	9
124	Thalamic interaction between the input and the output systems of the basal ganglia. Journal of Chemical Neuroanatomy, 1999, 16, 187-200.	1.0	57
125	Multiple axonal tracing: simultaneous detection of three tracers in the same section. Histochemistry and Cell Biology, 1998, 110, 509.	0.8	29
126	Multiple neuroanatomical tracing in primates. Brain Research Protocols, 1998, 2, 323-332.	1.7	31

#	Article	IF	CITATIONS
127	Use of peroxidase substrate Vector VIP® for multiple staining in light microscopy. Journal of Neuroscience Methods, 1997, 74, 1-7.	1.3	42
128	Projections from the primary auditory cortex onto the dorsal cortex of the inferior colliculus in albino rats. Archives Italiennes De Biologie, 1994, 132, 147-64.	0.1	20