
Jarrod R Fortwendel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282935/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional Regulation of Chitin Synthases by Calcineurin Controls Paradoxical Growth of <i>Aspergillus fumigatus</i> in Response to Caspofungin. Antimicrobial Agents and Chemotherapy, 2010, 54, 1555-1563.	1.4	146
2	Differential Effects of Inhibiting Chitin and 1,3-β- <scp>d</scp> -Glucan Synthesis in Ras and Calcineurin Mutants of <i>Aspergillus fumigatus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 476-482.	1.4	132
3	A Simple and Universal System for Gene Manipulation in Aspergillus fumigatus: <i>In Vitro</i> -Assembled Cas9-Guide RNA Ribonucleoproteins Coupled with Microhomology Repair Templates. MSphere, 2017, 2, .	1.3	130
4	Heat Shock Protein 90 Is Required for Conidiation and Cell Wall Integrity in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 1324-1332.	3.4	122
5	Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genetics and Biology, 2004, 41, 129-139.	0.9	93
6	Deletion of the Regulatory Subunit of Protein Kinase A in Aspergillus fumigatus Alters Morphology, Sensitivity to Oxidative Damage, andVirulence. Infection and Immunity, 2006, 74, 4865-4874.	1.0	92
7	Mutations in <i>hmg1</i> , Challenging the Paradigm of Clinical Triazole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	85
8	Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2011, 82, 1235-1259.	1.2	82
9	A Fungus-Specific Ras Homolog Contributes to the Hyphal Growth and Virulence of Aspergillus fumigatus. Eukaryotic Cell, 2005, 4, 1982-1989.	3.4	79
10	Deletion of the Aspergillus fumigatus Gene Encoding the Ras-Related Protein RhbA Reduces Virulence in a Model of Invasive Pulmonary Aspergillosis. Infection and Immunity, 2003, 71, 2819-2826.	1.0	72
11	The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Frontiers in Energy Research, 2016, 4, .	1.2	70
12	Phosphorylation of Calcineurin at a Novel Serine-Proline Rich Region Orchestrates Hyphal Growth and Virulence in Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003564.	2.1	60
13	<i>Aspergillus fumigatus</i> RasA Regulates Asexual Development and Cell Wall Integrity. Eukaryotic Cell, 2008, 7, 1530-1539.	3.4	55
14	Plasma Membrane Localization Is Required for RasA-Mediated Polarized Morphogenesis and Virulence of Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 966-977.	3.4	54
15	Emerging threat of triazole-resistant Aspergillus fumigatus. Journal of Antimicrobial Chemotherapy, 2019, 74, 835-842.	1.3	51
16	Regulation of expression, activity and localization of fungal chitin synthases. Medical Mycology, 2012, 50, 2-17.	0.3	41
17	Calcineurin Localizes to the Hyphal Septum in Aspergillus fumigatus : Implications for Septum Formation and Conidiophore Development. Eukaryotic Cell, 2008, 7, 1606-1610.	3.4	39
18	Mechanisms of triazole resistance in <i>Aspergillus fumigatus</i> . Environmental Microbiology, 2020, 22, 4934-4952.	1.8	36

#	Article	IF	CITATIONS
19	Whole-genome sequencing reveals highly specific gene targeting by in vitro assembled Cas9-ribonucleoprotein complexes in Aspergillus fumigatus. Fungal Biology and Biotechnology, 2018, 5, 11.	2.5	34
20	Newer combination antifungal therapies for invasive aspergillosis. Medical Mycology, 2011, 49, S77-S81.	0.3	27
21	Orchestration of morphogenesis in filamentous fungi: conserved roles for Ras signaling networks. Fungal Biology Reviews, 2015, 29, 54-62.	1.9	24
22	Control of Ras-Mediated Signaling in Aspergillus fumigatus. Mycopathologia, 2014, 178, 325-330.	1.3	23
23	Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. MBio, 2020, 11, .	1.8	23
24	The chitin synthase genes chsA and chsC are not required for cell wall stress responses in the human pathogen Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2011, 411, 549-554.	1.0	21
25	Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi. Fungal Genomics & Biology, 2012, 02, 105.	0.4	21
26	The <i>Aspergillus fumigatus</i> farnesyltransferase β-subunit, RamA, mediates growth, virulence, and antifungal susceptibility. Virulence, 2017, 8, 1401-1416.	1.8	20
27	Differential localization patterns of septins during growth of the human fungal pathogen Aspergillus fumigatus reveal novel functions. Biochemical and Biophysical Research Communications, 2011, 405, 238-243.	1.0	19
28	Regulatable Ras Activity Is Critical for Proper Establishment and Maintenance of Polarity in Aspergillus fumigatus. Eukaryotic Cell, 2011, 10, 611-615.	3.4	19
29	Exploration of Aspergillus fumigatus Ras pathways for novel antifungal drug targets. Frontiers in Microbiology, 2015, 6, 128.	1.5	18
30	A Fungus-Specific Protein Domain Is Essential for RasA-Mediated Morphogenetic Signaling in Aspergillus fumigatus. MSphere, 2016, 1, .	1.3	14
31	Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi. Virulence, 2019, 10, 511-526.	1.8	11
32	Loss of Septation Initiation Network (SIN) kinases blocks tissue invasion and unlocks echinocandin cidal activity against Aspergillus fumigatus. PLoS Pathogens, 2021, 17, e1009806.	2.1	11
33	C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus. Frontiers in Microbiology, 2018, 9, 562.	1.5	10
34	Genome-Wide Association for Itraconazole Sensitivity in Non-resistant Clinical Isolates of Aspergillus fumigatus. Frontiers in Fungal Biology, 2021, 1, .	0.9	10
35	Autoantibody-Mediated Pulmonary Alveolar Proteinosis in <i>Rasgrp1</i> -Deficient Mice. Journal of Immunology, 2016, 197, 470-479.	0.4	9
36	SH3 lass Ras guanine nucleotide exchange factors are essential for <i>Aspergillus fumigatus</i> invasive growth. Cellular Microbiology, 2019, 21, e13013.	1.1	9

#	Article	IF	CITATIONS
37	Commonly Used Oncology Drugs Decrease Antifungal Effectiveness against Candida and Aspergillus Species. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	8
38	Analysis of the Contribution of <i>cyp51</i> Genes to Azole Resistance in <i>Aspergillus</i> Section <i>Nigri</i> with the CRISPR-Cas9 Technique. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	6
39	Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. Journal of Fungi (Basel, Switzerland), 2020, 6, 285.	1.5	5
40	Differential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins. PLoS ONE, 2015, 10, e0142535.	1.1	2
41	Growth Inhibitory Effect of Cerivastatin Against Yeasts and Aspergillus fumigatus. Open Forum Infectious Diseases, 2015, 2, .	0.4	0