Tell Tuttle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282697/publications.pdf

Version: 2024-02-01

71682 57752 6,772 138 44 76 citations h-index g-index papers 154 154 154 6939 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chemistry, 2015, 7, 30-37.	13.6	597
2	Sugars, Alkaloids, and Heteroaromatics: Exploring Heterocyclic Chemistry with Alkoxyallenes. Accounts of Chemical Research, 2009, 42, 45-56.	15.6	310
3	KO <i>t</i> Bu: A Privileged Reagent for Electron Transfer Reactions?. Journal of the American Chemical Society, 2016, 138, 7402-7410.	13.7	260
4	Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356, 1064-1068.	12.6	244
5	Virtual Screening for Dipeptide Aggregation: Toward Predictive Tools for Peptide Self-Assembly. Journal of Physical Chemistry Letters, 2011, 2, 2380-2384.	4.6	185
6	Concerted Nucleophilic Aromatic Substitution Reactions. Angewandte Chemie - International Edition, 2019, 58, 16368-16388.	13.8	156
7	Organic super-electron-donors: initiators in transition metal-free haloarene–arene coupling. Chemical Science, 2014, 5, 476-482.	7.4	149
8	Assessing the Utility of Infrared Spectroscopy as a Structural Diagnostic Tool for \hat{l}^2 -Sheets in Self-Assembling Aromatic Peptide Amphiphiles. Langmuir, 2013, 29, 9510-9515.	3.5	128
9	Alkoxyallenes as building blocks for organic synthesis. Chemical Society Reviews, 2014, 43, 2888-2903.	38.1	125
10	The Generation of Aryl Anions by Double Electron Transfer to Aryl Iodides from a Neutral Ground-State Organic Super-Electron Donor. Angewandte Chemie - International Edition, 2007, 46, 5178-5183.	13.8	123
11	Identifying the Roles of Amino Acids, Alcohols and 1,2-Diamines as Mediators in Coupling of Haloarenes to Arenes. Journal of the American Chemical Society, 2014, 136, 17818-17826.	13.7	122
12	Iridium-Catalyzed C–H Activation and Deuteration of Primary Sulfonamides: An Experimental and Computational Study. ACS Catalysis, 2015, 5, 402-410.	11.2	121
13	An Ambipolar BODIPY Derivative for a White Exciplex OLED and Cholesteric Liquid Crystal Laser toward Multifunctional Devices. ACS Applied Materials & Interfaces, 2017, 9, 4750-4757.	8.0	116
14	Guiding principles for peptide nanotechnology through directed discovery. Chemical Society Reviews, 2018, 47, 3737-3758.	38.1	116
15	The Electronic Structure of Iron Corroles: A Combined Experimental and Quantum Chemical Study. Chemistry - A European Journal, 2008, 14, 10839-10851.	3.3	112
16	Aromatic peptide amphiphiles: significance of the Fmoc moiety. Chemical Communications, 2013, 49, 10587.	4.1	112
17	The Synthesis of Highly Active Iridium(I) Complexes and their Application in Catalytic Hydrogen Isotope Exchange. Advanced Synthesis and Catalysis, 2014, 356, 3551-3562.	4.3	107
18	Reductive Cleavage of Sulfones and Sulfonamides by a Neutral Organic Super-Electron-Donor (S.E.D.) Reagent. Journal of the American Chemical Society, 2007, 129, 13368-13369.	13.7	101

#	Article	IF	CITATIONS
19	Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes and Pigments, 2011, 88, 149-155.	3.7	97
20	OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application. Physical Chemistry Chemical Physics, 2008, 10, 2159.	2.8	91
21	Amino sugars and their mimetics via 1,2-oxazines. Chemical Society Reviews, 2010, 39, 549-557.	38.1	87
22	Exploiting CH-Ï€ interactions in supramolecular hydrogels of aromatic carbohydrate amphiphiles. Chemical Science, 2011, 2, 1349.	7.4	84
23	An Expedient Synthesis of Pyrrole Derivatives by Reaction of Lithiated Methoxyallenes with Imines. Synlett, 1999, 1999, 1871-1874.	1.8	83
24	Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter, 2012, 8, 5595.	2.7	82
25	Metalâ€Free Reductive Cleavage of CN and SN Bonds by Photoactivated Electron Transfer from a Neutral Organic Donor. Angewandte Chemie - International Edition, 2014, 53, 474-478.	13.8	82
26	Iridium atalyzed Formyl‧elective Deuteration of Aldehydes. Angewandte Chemie - International Edition, 2017, 56, 7808-7812.	13.8	81
27	Supramolecular Fibers in Gels Can Be at Thermodynamic Equilibrium: A Simple Packing Model Reveals Preferential Fibril Formation <i>versus</i> Crystallization. ACS Nano, 2016, 10, 2661-2668.	14.6	79
28	Latrunculin Analogues with Improved Biological Profiles by "Diverted Total Synthesis― Preparation, Evaluation, and Computational Analysis. Chemistry - A European Journal, 2007, 13, 135-149.	3.3	76
29	A single emitting layer white OLED based on exciplex interface emission. Journal of Materials Chemistry C, 2016, 4, 3851-3856.	5.5	74
30	Tripeptide Emulsifiers. Advanced Materials, 2016, 28, 1381-1386.	21.0	73
31	Site-Selective Deuteration of $\langle i \rangle N \langle i \rangle$ -Heterocycles via Iridium-Catalyzed Hydrogen Isotope Exchange. ACS Catalysis, 2017, 7, 7182-7186.	11.2	71
32	Electron Transfer Reactions: KO <i>t</i> Bu (but not NaO <i>t</i> Bu) Photoreduces Benzophenone under Activation by Visible Light. Journal of the American Chemical Society, 2018, 140, 9751-9757.	13.7	71
33	Overturning Established Chemoselectivities: Selective Reduction of Arenes over Malonates and Cyanoacetates by Photoactivated Organic Electron Donors. Journal of the American Chemical Society, 2013, 135, 10934-10937.	13.7	67
34	Reductions of Challenging Organic Substrates by a Nickel Complex of a Noninnocent Crown Carbene Ligand. Journal of the American Chemical Society, 2010, 132, 15462-15464.	13.7	63
35	Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter, 2011, 7, 10032.	2.7	60
36	Cooperative, ion-sensitive co-assembly of tripeptide hydrogels. Chemical Communications, 2017, 53, 9562-9565.	4.1	57

#	Article	IF	CITATIONS
37	A Stereoselective and Short Total Synthesis of the Polyhydroxylated -Amino Acid (â^')-Detoxinine, Based on Stereoselective Preparation of Dihydropyrrole Derivatives from Lithiated Alkoxyallenes. Chemistry - A European Journal, 2003, 9, 1405-1415.	3.3	56
38	Practically convenient and industrially-aligned methods for iridium-catalysed hydrogen isotope exchange processes. Organic and Biomolecular Chemistry, 2014, 12, 3598-3603.	2.8	55
39	Discovery of Catalytic Phages by Biocatalytic Self-Assembly. Journal of the American Chemical Society, 2014, 136, 15893-15896.	13.7	53
40	Mechanism of Formation of Hydrogen Trioxide (HOOOH) in the Ozonation of 1,2-Diphenylhydrazine and 1,2-Dimethylhydrazine:Â An Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2003, 125, 11553-11564.	13.7	51
41	Predicting the UV–vis spectra of oxazine dyes. Beilstein Journal of Organic Chemistry, 2011, 7, 432-441.	2.2	51
42	Docking, Triggering, and Biological Activity of Dynemicin A in DNA:Â A Computational Study. Journal of the American Chemical Society, 2005, 127, 9469-9484.	13.7	50
43	Mechanism of Olefin Hydrosilylation Catalyzed by RuCl2(CO)2(PPh3)2: A DFT Studyâ€. Organometallics, 2006, 25, 4504-4513.	2.3	49
44	Organobase-Catalyzed Amidation of Esters with Amino Alcohols. Organic Letters, 2013, 15, 2506-2509.	4.6	49
45	The Ozonation of Silanes and Germanes:Â An Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2006, 128, 4090-4100.	13.7	48
46	Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nature Materials, 2021, 20, 403-409.	27.5	44
47	Imidazole-derived carbenes and their elusive tetraazafulvalene dimers. Chemical Science, 2012, 3, 1675.	7.4	43
48	Electronâ€Transfer and Hydrideâ€Transfer Pathways in the Stoltz–Grubbs Reducing System (KO <i>t</i> Bu/Et ₃ SiH). Angewandte Chemie - International Edition, 2017, 56, 13747-13751.	13.8	41
49	Analysis of the NMR through-space coupling mechanism between 19F atoms. Chemical Physics Letters, 2004, 394, 5-13.	2.6	40
50	Lithiumâ€Aluminateâ€Catalyzed Hydrophosphination Applications. Angewandte Chemie - International Edition, 2019, 58, 12291-12296.	13.8	40
51	Protonâ€Conductive Melaninâ€Like Fibers through Enzymatic Oxidation of a Selfâ€Assembling Peptide. Advanced Materials, 2020, 32, e2003511.	21.0	38
52	Catalyst: Can Systems Chemistry Unravel the Mysteries of the Chemical Origins of Life?. CheM, 2019, 5, 1917-1920.	11.7	37
53	Neutral Organic Super Electron Donors Made Catalytic. Angewandte Chemie - International Edition, 2019, 58, 11454-11458.	13.8	37
54	Evidence for the HOOO- Anion in the Ozonation of 1,3-Dioxolanes:  Hemiortho Esters as the Primary Products. Journal of the American Chemical Society, 2002, 124, 11260-11261.	13.7	36

#	Article	IF	CITATIONS
55	Structural Tracking of the Potassiumâ€Mediated Magnesiation of Anisole. Chemistry - A European Journal, 2009, 15, 10702-10706.	3.3	36
56	Investigation of the NMR Spinâ-'Spin Coupling Constants across the Hydrogen Bonds in Ubiquitin:Â The Nature of the Hydrogen Bond as Reflected by the Coupling Mechanism. Journal of the American Chemical Society, 2004, 126, 5093-5107.	13.7	35
57	Analysis of the NMR Spinâ^'Spin Coupling Mechanism Across a Hâ^'Bond:  Nature of the H-Bond in Proteins. Journal of Physical Chemistry B, 2004, 108, 1115-1129.	2.6	34
58	Dual Roles for Potassium Hydride in Haloarene Reduction: CS _N Ar and Single Electron Transfer Reduction via Organic Electron Donors Formed in Benzene. Journal of the American Chemical Society, 2018, 140, 11510-11518.	13.7	34
59	Hemiortho Esters and Hydrotrioxides as the Primary Products in the Low-Temperature Ozonation of Cyclic Acetals:Â An Experimental and Theoretical Investigation. Journal of the American Chemical Society, 2004, 126, 16093-16104.	13.7	33
60	Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles. Soft Matter, 2016, 12, 8307-8315.	2.7	31
61	Computational Study on the Boundary Between the Concerted and Stepwise Mechanism of Bimolecular S _N Ar Reactions. Journal of the American Chemical Society, 2020, 142, 14871-14876.	13.7	31
62	Mechanism of olefin hydrosilylation catalyzed by [RuCl(NCCH3)5]+: A DFT study. Journal of Organometallic Chemistry, 2007, 692, 2282-2290.	1.8	30
63	Main Group Multiple C–H/N–H Bond Activation of a Diamine and Isolation of A Molecular Dilithium Zincate Hydride: Experimental and DFT Evidence for Alkali Metal–Zinc Synergistic Effects. Journal of the American Chemical Society, 2011, 133, 13706-13717.	13.7	30
64	Iridium-Catalysed ortho-Directed Deuterium Labelling of Aromatic Estersâ€"An Experimental and Theoretical Study on Directing Group Chemoselectivity. Molecules, 2015, 20, 11676-11698.	3.8	30
65	Oligothiophene Cruciform with a Germanium Spiro Center: A Promising Material for Organic Photovoltaics. Angewandte Chemie - International Edition, 2012, 51, 4562-4567.	13.8	29
66	Investigation of the Ultrafast Dynamics Occurring during Unsensitized Photocatalytic H ₂ Evolution by an [FeFe]-Hydrogenase Subsite Analogue. Organometallics, 2014, 33, 5888-5896.	2.3	26
67	Computational Approaches to Understanding the Selfâ€assembly of Peptideâ€based Nanostructures. Israel Journal of Chemistry, 2015, 55, 724-734.	2.3	26
68	Biocatalytic Self-Assembly of Tripeptide Gels and Emulsions. Langmuir, 2017, 33, 4986-4995.	3.5	26
69	Konzertierte nukleophile aromatische Substitutionen. Angewandte Chemie, 2019, 131, 16518-16540.	2.0	26
70	Evaluating the Thermal Vinylcyclopropane Rearrangement (VCPR) as a Practical Method for the Synthesis of Difluorinated Cyclopentenes: Experimental and Computational Studies of Rearrangement Stereospecificity. Chemistry - A European Journal, 2014, 20, 14305-14316.	3.3	25
71	Predicting the reducing power of organic super electron donors. RSC Advances, 2016, 6, 11335-11343.	3.6	25
72	Cyclizations of Alkoxyallenes: Mechanisms, Intermediates, ÂProducts – A Personal Account on Solved and Unsolved ProblemsÂwith Unique Allene Building Blocks. Synthesis, 2017, 49, 3291-3302.	2.3	25

#	Article	IF	Citations
73	A study of diketopiperazines as electron-donor initiators in transition metal-free haloarene–arene coupling. Organic and Biomolecular Chemistry, 2017, 15, 3324-3336.	2.8	25
74	Beyond Tripeptides Two-Step Active Machine Learning for Very Large Data sets. Journal of Chemical Theory and Computation, 2021, 17, 3221-3232.	5.3	24
75	Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells. Beilstein Journal of Organic Chemistry, 2014, 10, 2683-2695.	2.2	23
76	Enzymatically activated emulsions stabilised by interfacial nanofibre networks. Soft Matter, 2016, 12, 2623-2631.	2.7	23
77	Iridiumâ€Catalyzed Formylâ€Selective Deuteration of Aldehydes. Angewandte Chemie, 2017, 129, 7916-7920.	2.0	22
78	Computational prediction of tripeptide-dipeptide co-assembly. Molecular Physics, 2019, 117, 1151-1163.	1.7	22
79	Dihydrogen Trioxide Clusters, (HOOOH) < sub > <i> n < /i > / sub > (<i> n < /i > = 2â°'4), and the Hydrogen-Bonded Complexes of HOOOH with Acetone and Dimethyl Ether: Implications for the Decomposition of HOOOH. Journal of Physical Chemistry A, 2008, 112, 8129-8135.</i></i>	2.5	21
80	An Efficient Methyltrioxorhenium(VII)-Catalyzed Transformation of Hydrotrioxides (ROOOH) into Dihydrogen Trioxide (HOOOH). Journal of the American Chemical Society, 2008, 130, 14086-14087.	13.7	21
81	Ruthenium based catalysts for olefin hydrosilylation: dichloro(p-cymene)ruthenium and related complexes. Dalton Transactions, 2009, , 5894.	3.3	20
82	Computationally-Guided Development of a Chelated NHC-P Iridium(I) Complex for the Directed Hydrogen Isotope Exchange of Aryl Sulfones. ACS Catalysis, 2020, 10, 11120-11126.	11.2	20
83	Influence of Solvent in Controlling Peptide–Surface Interactions. Journal of Physical Chemistry Letters, 2015, 6, 3944-3949.	4.6	19
84	Elucidation of the bonding of a near infrared dye to hollow gold nanospheres – a chalcogen tripod. Chemical Science, 2016, 7, 5160-5170.	7.4	19
85	Efficient Syntheses of 2,5â€Dihydropyrroles, Pyrrolidinâ€3â€ones, and Electronâ€Rich Pyrroles from < >N>N>à€Tosylimines and Lithiated Alkoxyallenes. European Journal of Organic Chemistry, 2017, 2017, 1965-1972.	2.4	18
86	Analysis of long-range NMR spin–spin coupling in polyenes and the π-mechanism. Physical Chemistry Chemical Physics, 2005, 7, 452-462.	2.8	17
87	Substrate Orientation in 4-Oxalocrotonate Tautomerase and Its Effect on QM/MM Energy Profiles. Journal of Physical Chemistry B, 2007, 111, 7665-7674.	2.6	17
88	Tungsten(VI) N-Heterocyclic Carbene Complexes: Synthetic, Structural, and Computational Study. Organometallics, 2011, 30, 6262-6269.	2.3	17
89	CHARMM force field parameterization protocol for self-assembling peptide amphiphiles: the Fmoc moiety. Physical Chemistry Chemical Physics, 2016, 18, 4659-4667.	2.8	17
90	Decomposition of nuclear magnetic resonance spin–spin coupling constants into active and passive orbital contributions. Journal of Chemical Physics, 2004, 120, 9952-9968.	3.0	16

#	Article	IF	CITATIONS
91	A QM/MM Study of the Bergman Reaction of Dynemicin A in the Minor Groove of DNA. Journal of Physical Chemistry B, 2007, 111, 8321-8328.	2.6	16
92	Design of a New Warhead for the Natural Enediyne Dynemicin A. An Increase of Biological Activity. Journal of Physical Chemistry B, 2008, 112, 2661-2670.	2.6	16
93	Reactions of Cycloaliphatic Thioketones and Their Oxo Analogues with Lithiated Methoxyallene: A New Approach to Vinylthiiranes. Chemistry - an Asian Journal, 2014, 9, 2641-2648.	3.3	16
94	Alkoxyallenes as Starting Materials for the Syntheses of Natural Products. Current Organic Chemistry, 2020, 23, 2976-3003.	1.6	16
95	Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries. Organic and Biomolecular Chemistry, 2017, 15, 6541-6547.	2.8	15
96	Hydrotrioxides Rather than Cyclic Tetraoxides (Tetraoxolanes) as the Primary Reaction Intermediates in the Low-Temperature Ozonation of Aldehydes. The Case of Benzaldehyde. Journal of Organic Chemistry, 2009, 74, 96-101.	3.2	14
97	Evidence of single electron transfer from the enolate anion of an N,N′-dialkyldiketopiperazine additive in BHAS coupling reactions. Organic and Biomolecular Chemistry, 2017, 15, 8810-8819.	2.8	14
98	Nâ€Silylation of Amines Mediated by Et ₃ SiH/KO ^{<i>t</i>} Bu. Helvetica Chimica Acta, 2019, 102, e1900235.	1.6	14
99	Expanding the Conformational Landscape of Minimalistic Tripeptides by Their <i>O</i> Glycosylation. Journal of the American Chemical Society, 2021, 143, 19703-19710.	13.7	14
100	Understanding the Enzymatic Activity of 4-Oxalocrotonate Tautomerase and Its Mutant Analogues:  A Computational Study. Journal of Physical Chemistry B, 2006, 110, 19685-19695.	2.6	12
101	The Reactivity of Calicheamicin \hat{I}^3 < sub>1< sup>1 in the Minor Groove of DNA: The Decisive Role of the Environment. Chemistry - A European Journal, 2007, 13, 9256-9269.	3.3	12
102	Thiazole-induced rigidification in substituted dithieno-tetrathiafulvalene: the effect of planarisation on charge transport properties. Beilstein Journal of Organic Chemistry, 2015, 11, 1148-1154.	2.2	12
103	Lithiumâ€Aluminateâ€Catalyzed Hydrophosphination Applications. Angewandte Chemie, 2019, 131, 12419-12424.	2.0	12
104	Unbiased Discovery of Dynamic Peptideâ€ATP Complexes. ChemSystemsChem, 2019, 1, 7-11.	2.6	12
105	Stabilization of metastable hydrogen trioxide (HOOOH) and the hydrotrioxyl radical (HOOO) by complexation with sulfuric acid. A theoretical study. Computational and Theoretical Chemistry, 2013, 1010, 19-24.	2.5	11
106	Forming a ruthenium isomerisation catalyst from Grubbs II: a DFT study. Dalton Transactions, 2014, 43, 8493-8498.	3.3	11
107	C–C bond-forming reactions of ground-state aryl halides under reductive activation. Tetrahedron, 2016, 72, 7875-7887.	1.9	11
108	Towards a quantitative understanding of palladium metal scavenger performance: an electronic structure calculation approach. Dalton Transactions, 2014, 43, 469-478.	3.3	10

#	Article	IF	Citations
109	Elucidation of the Electronic Structure of Molecules with the Help of NMR Spinâ 'Spin Coupling Constants:Â The FH Molecule. Journal of Physical Chemistry A, 2005, 109, 2325-2339.	2.5	9
110	Comment on "Solvent Effect on the Electronic Spectra of Azine Dyes under Alkaline Condition― Journal of Physical Chemistry A, 2009, 113, 9575-9576.	2.5	9
111	New reductive rearrangement of <i>N</i> -arylindoles triggered by the Grubbs–Stoltz reagent Et ₃ SiH/KO ^t Bu. Chemical Science, 2020, 11, 3719-3726.	7.4	9
112	Catalyst design in Câ€"H activation: a case study in the use of binding free energies to rationalise intramolecular directing group selectivity in iridium catalysis. Chemical Science, 2021, 12, 6747-6755.	7.4	9
113	Directed Discovery of Tetrapeptide Emulsifiers. Frontiers in Chemistry, 2022, 10, 822868.	3.6	9
114	The Search for Protonated Dihydrogen Trioxide (HOOOH): Insights from Theory and Experiment. Journal of Physical Chemistry A, 2010, 114, 8003-8008.	2.5	8
115	Synthesis and properties of novel star-shaped oligofluorene conjugated systems with BODIPY cores. Beilstein Journal of Organic Chemistry, 2014, 10, 2704-2714.	2.2	8
116	Electronâ€Transfer and Hydrideâ€Transfer Pathways in the Stoltz–Grubbs Reducing System (KO <i>t</i> Bu/Et ₃ SiH). Angewandte Chemie, 2017, 129, 13935-13939.	2.0	8
117	New Insights into the Catalytic Mechanism of Aldose Reductase: A QM/MM Study. ACS Omega, 2017, 2, 5737-5747.	3.5	8
118	KOtBu as a Single Electron Donor? Revisiting the Halogenation of Alkanes with CBr4 and CCl4. Molecules, 2018, 23, 1055.	3.8	8
119	Alkoxyallene-based syntheses of preussin and its analogs and their cytotoxicity. Organic and Biomolecular Chemistry, 2019, 17, 122-134.	2.8	8
120	Constant pH Coarse-Grained Molecular Dynamics with Stochastic Charge Neutralization. Journal of Physical Chemistry Letters, 2022, 13, 4046-4051.	4.6	8
121	Superelectrophilic Amidine Dications: Dealkylation by Triflate Anion. Angewandte Chemie - International Edition, 2012, 51, 8516-8519.	13.8	7
122	A Computational Study of Anionic Alkoxideâ€"Allene and Amideâ€"Allene Cyclizations. European Journal of Organic Chemistry, 2017, 2017, 6867-6871.	2.4	7
123	Addition of Metalated 3â€Alkylâ€Substituted Alkoxyallenes to Imines: Preparation of Tetrasubstituted 2,5â€Dihydropyrroles, Pyrrolidinâ€3â€ones, and Pyrroles. European Journal of Organic Chemistry, 2018, 2018, 4071-4080.	2.4	7
124	Averaging Semiempirical NMR Chemical Shifts: Dynamic Effects on the Subpicosecond Time Scale. Journal of Physical Chemistry A, 2009, 113, 11723-11733.	2.5	6
125	Incorporation of perfluorohexyl-functionalised thiophenes into oligofluorene-truxenes: synthesis and physical properties. Beilstein Journal of Organic Chemistry, 2013, 9, 1243-1251.	2.2	6
126	Benzylic Câ^'H Functionalisation by [Et ₃ SiH+KO ^{<i>t</i>} Bu] leads to Radical Rearrangements in <i>oâ€</i>	4.3	6

TELL TUTTLE

#	Article	IF	CITATIONS
127	Reproduction of macroscopic properties of unsaturated triacylglycerides using a modified NERD force field. Journal of Molecular Graphics and Modelling, 2021, 108, 107996.	2.4	6
128	The Natural Product Lepidiline A as an N-Heterocyclic Carbene Ligand Precursor in Complexes of the Catalysis. Catalysts, 2020, 10, 161.	3. 5	6
129	Neutral Organic Super Electron Donors Made Catalytic. Angewandte Chemie, 2019, 131, 11576-11580.	2.0	5
130	Catalytic hydrophosphination of alkynes using structurally diverse sodium diphenylphosphide donor complexes. Cell Reports Physical Science, 2022, 3, 100942.	5 . 6	5
131	Effect of solvent on radical cyclisation pathways: S _{RN} 1 vs. aryl–aryl bond forming mechanisms. Organic and Biomolecular Chemistry, 2017, 15, 920-927.	2.8	4
132	Understanding the dopant induced effects on SFX-MeOTAD for perovskite solar cells: a spectroscopic and computational investigation. Journal of Materials Chemistry C, 2021, 9, 16226-16239.	5 . 5	4
133	Structurally Defined Ringâ€Opening and Insertion of Pinacolborane into Aluminiumâ€Nitrogen Bonds of Sterically Demanding Dialkylaluminium Amides. European Journal of Inorganic Chemistry, 2021, 2021, 50-53.	2.0	4
134	Radical and Ionic Mechanisms in Rearrangements of o-Tolyl Aryl Ethers and Amines Initiated by the Grubbs–Stoltz Reagent, Et3SiH/KOtBu. Molecules, 2021, 26, 6879.	3.8	4
135	Artificial Intelligence and Health in Nepal. Journal of College of Medical Sciences-Nepal, 2020, 10, 915-918.	0.3	3
136	Applications of QM/MM in inorganic chemistry. Spectroscopic Properties of Inorganic and Organometallic Compounds, 0, , 87-110.	0.4	1
137	Combinatorial Discovery and Validation of Heptapeptides with UTP Binding Induced Structure. ChemSystemsChem, 2021, 3, e2000025.	2.6	1
138	Molecular Modelling and Design of Radiolabelled Complexes for Melanoma Diagnosis. Australian Journal of Chemistry, 2004, 57, 87.	0.9	0