## Plinio C Innocenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282499/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview.<br>Journal of Non-Crystalline Solids, 2003, 316, 309-319.                                                         | 1.5  | 830       |
| 2  | Mesoporous thin films: properties and applications. Chemical Society Reviews, 2013, 42, 4198.                                                                                                                     | 18.7 | 267       |
| 3  | Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Solâ^'Gel Coatings: An Example of<br>Multifunctional Nanostructured Materials for Photovoltaic Cells. Chemistry of Materials, 2010, 22,<br>4406-4413. | 3.2  | 258       |
| 4  | Organic–inorganic hybrid materials for non-linear optics. Journal of Materials Chemistry, 2005, 15,<br>3821.                                                                                                      | 6.7  | 228       |
| 5  | Mesoporous Hybrid Thin Films: The Physics and Chemistry Beneath. Chemistry - A European Journal, 2006, 12, 4478-4494.                                                                                             | 1.7  | 227       |
| 6  | Hybrid materials for optics and photonics. Chemical Society Reviews, 2011, 40, 886.                                                                                                                               | 18.7 | 210       |
| 7  | Orderâ^'Disorder Transitions and Evolution of Silica Structure in Self-Assembled Mesostructured<br>Silica Films Studied through FTIR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4711-4717.         | 1.2  | 196       |
| 8  | Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chemical Science, 2020, 11, 6606-6622.                                                                                     | 3.7  | 170       |
| 9  | Fluorescence Properties of the Ru(bpy)32+Complex Incorporated in Solâ^'Gel-Derived Silica Coating<br>Films. Journal of Physical Chemistry B, 1997, 101, 2285-2291.                                                | 1.2  | 167       |
| 10 | New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organicâ^'Inorganic<br>Materials. Chemistry of Materials, 1999, 11, 1672-1679.                                                            | 3.2  | 163       |
| 11 | Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane.<br>Journal of Sol-Gel Science and Technology, 1994, 3, 47-55.                                                      | 1.1  | 156       |
| 12 | Fullerene-Based Organicâ^'Inorganic Nanocomposites and Their Applications. Chemistry of Materials, 2001, 13, 3126-3139.                                                                                           | 3.2  | 141       |
| 13 | Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales.<br>Chemistry of Materials, 2011, 23, 2501-2509.                                                                       | 3.2  | 135       |
| 14 | Silica Orthorhombic Mesostructured Films with Low Refractive Index and High Thermal Stability.<br>Journal of Physical Chemistry B, 2004, 108, 10942-10948.                                                        | 1.2  | 114       |
| 15 | Hybrid Organic-Inorganic Sol-Gel Materials Based on Epoxy-Amine Systems. Journal of Sol-Gel Science<br>and Technology, 2005, 35, 225-235.                                                                         | 1.1  | 114       |
| 16 | Orderâ^'Disorder in Self-Assembled Mesostructured Silica Films: A Concepts Review. Chemistry of<br>Materials, 2009, 21, 2555-2564.                                                                                | 3.2  | 113       |
| 17 | Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. Chemistry of Materials, 2000, 12, 3726-3732.                                                                               | 3.2  | 112       |
| 18 | Microstructural and optical properties of sol-gel silica-titania waveguides. Journal of<br>Non-Crystalline Solids, 1997, 220, 202-209.                                                                            | 1.5  | 109       |

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chemistry - A<br>European Journal, 2019, 25, 11963-11974.                                  | 1.7  | 99        |
| 20 | Solid-State NMR Characterization of the Surfactantâ^'Silica Interface in Templated Silicas:Â Acidic versus Basic Conditions. Chemistry of Materials, 2007, 19, 1343-1354.      | 3.2  | 98        |
| 21 | Optical and surface properties of inorganic and hybrid organic–inorganic silica–titania sol–gel<br>planar waveguides. Journal of Non-Crystalline Solids, 1999, 259, 182-190.   | 1.5  | 87        |
| 22 | Patterning Techniques for Mesostructured Films. Chemistry of Materials, 2008, 20, 607-614.                                                                                     | 3.2  | 87        |
| 23 | C60 derivatives embedded in sol-gel silica films. Advanced Materials, 1995, 7, 404-406.                                                                                        | 11.1 | 86        |
| 24 | Evaporation of Ethanol and Ethanolâ^'Water Mixtures Studied by Time-Resolved Infrared Spectroscopy.<br>Journal of Physical Chemistry A, 2008, 112, 6512-6516.                  | 1.1  | 81        |
| 25 | Humidity sensors based on mesoporous silica thin films synthesised by block copolymers. Journal of the European Ceramic Society, 2004, 24, 1969-1972.                          | 2.8  | 80        |
| 26 | Dimer-to-monomer transformation of rhodamine 6G in sol—gel silica films. Journal of<br>Non-Crystalline Solids, 1996, 201, 26-36.                                               | 1.5  | 77        |
| 27 | Electrical and structural characterisation of mesoporous silica thin films as humidity sensors.<br>Sensors and Actuators B: Chemical, 2001, 76, 299-303.                       | 4.0  | 71        |
| 28 | One-Pot Route to Produce Hierarchically Porous Titania Thin Films by Controlled Self-Assembly,<br>Swelling, and Phase Separation. Chemistry of Materials, 2009, 21, 2763-2769. | 3.2  | 71        |
| 29 | Highly Ordered "Defect-Free―Self-Assembled Hybrid Films with a Tetragonal Mesostructure. Journal of the American Chemical Society, 2005, 127, 3838-3846.                       | 6.6  | 69        |
| 30 | Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.                         | 1.6  | 68        |
| 31 | Mesoporous silica thin films for alcohol sensors. Journal of the European Ceramic Society, 2001, 21, 1985-1988.                                                                | 2.8  | 67        |
| 32 | Fluorescent carbon dots in solid-state: From nanostructures to functional devices. Progress in Solid<br>State Chemistry, 2021, 62, 100295.                                     | 3.9  | 67        |
| 33 | Aggregation States of Rhodamine 6G in Mesostructured Silica Films. Journal of Physical Chemistry C, 2008, 112, 16225-16230.                                                    | 1.5  | 66        |
| 34 | Mechanical Properties of 3-Glycidoxypropyltrimethoxysilane Based Hybrid Organic-Inorganic<br>Materials. Journal of Sol-Gel Science and Technology, 2001, 20, 293-301.          | 1.1  | 65        |
| 35 | Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One<br>Step. Advanced Materials, 2009, 21, 4932-4936                            | 11.1 | 63        |
| 36 | Sol-gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Transactions, 2009, , 9146.                                                  | 1.6  | 63        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for<br>molecular detection. Applied Surface Science, 2018, 450, 451-460.                                                           | 3.1 | 63        |
| 38 | Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. Nanoscale, 2015, 7, 12759-12772.                                                                                   | 2.8 | 60        |
| 39 | Incorporation of Zwitterionic Pushâ^'Pull Chromophores into Hybrid Organicâ^'Inorganic Matrixes.<br>Chemistry of Materials, 2002, 14, 3758-3766.                                                                              | 3.2 | 59        |
| 40 | Hierarchical Porous Silica Films with Ultralow Refractive Index. Chemistry of Materials, 2009, 21, 2055-2061.                                                                                                                 | 3.2 | 57        |
| 41 | Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel<br>glasses. Carbon, 2000, 38, 1653-1662.                                                                               | 5.4 | 56        |
| 42 | A Novel Synthesis of Solâ^'Gel Hybrid Materials by a Nonhydrolytic/Hydrolytic Reaction of<br>(3-Glycidoxypropyl)trimethoxysilane with TiCl4. Chemistry of Materials, 2001, 13, 3635-3643.                                     | 3.2 | 56        |
| 43 | Energy Transfer Induced by Carbon Quantum Dots in Porous Zinc Oxide Nanocomposite Films. Journal of Physical Chemistry C, 2015, 119, 2837-2843.                                                                               | 1.5 | 55        |
| 44 | A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol–gel films.<br>Journal of Non-Crystalline Solids, 2004, 333, 137-142.                                                                     | 1.5 | 54        |
| 45 | Time-Resolved Simultaneous Detection of Structural and Chemical Changes during Self-Assembly of Mesostructured Films. Journal of Physical Chemistry C, 2007, 111, 5345-5350.                                                  | 1.5 | 54        |
| 46 | Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation. ACS Applied Nano Materials, 2018,<br>1, 6724-6732.                                                                                                            | 2.4 | 53        |
| 47 | PbS-Doped Mesostructured Silica Films with High Optical Nonlinearity. Chemistry of Materials, 2005, 17, 4965-4970.                                                                                                            | 3.2 | 52        |
| 48 | 3-(Glycidoxypropyl)-trimethoxysilane–TiO2 hybrid organic–inorganic materials for optical limiting.<br>Journal of Non-Crystalline Solids, 2000, 265, 68-74.                                                                    | 1.5 | 51        |
| 49 | Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray<br>lithography. Chemical Communications, 2012, 48, 7483.                                                                             | 2.2 | 51        |
| 50 | Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Scientific Reports, 2020, 10, 4770.                                                                          | 1.6 | 51        |
| 51 | Hydroxylated boron nitride materials: from structures to functional applications. Journal of<br>Materials Science, 2021, 56, 4053-4079.                                                                                       | 1.7 | 50        |
| 52 | Time-Resolved Infrared Spectroscopy as an In Situ Tool To Study the Kinetics During Self-Assembly of Mesostructured Films. Journal of Physical Chemistry B, 2006, 110, 10837-10841.                                           | 1.2 | 49        |
| 53 | Zirconia-ormosil films doped with PbS quantum dots. Journal of Non-Crystalline Solids, 1999, 244, 55-62.                                                                                                                      | 1.5 | 48        |
| 54 | Controlling the Thermal Polymerization Process of Hybrid Organicâ^'Inorganic Films Synthesized from<br>3-Methacryloxypropyltrimethoxysilane and 3-Aminopropyltriethoxysilane. Chemistry of Materials,<br>2003, 15, 4790-4797. | 3.2 | 48        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Structural Control in Germania Hybrid Organicâ^'Inorganic Materials. Chemistry of Materials, 2005, 17,<br>3172-3180.                                                      | 3.2  | 48        |
| 56 | Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 2006, 88, 304-311.                                       | 2.2  | 48        |
| 57 | Evaporation-Induced Crystallization of Pluronic F127 Studied in Situ by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 304-308.         | 1.1  | 48        |
| 58 | Photoinduced Formation of Wrinkled Microstructures with Longâ€Range Order in Thin Oxide Films.<br>Advanced Materials, 2007, 19, 4343-4346.                                | 11.1 | 45        |
| 59 | Fabrication of Mesoporous Functionalized Arrays by Integrating Deep Xâ€Ray Lithography with Dipâ€Pen<br>Writing. Advanced Materials, 2008, 20, 1864-1869.                 | 11.1 | 45        |
| 60 | Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale, 2011, 3, 3760.                                   | 2.8  | 45        |
| 61 | Relative humidity and alcohol sensors based on mesoporous silica thin films synthesised from block copolymers. Sensors and Actuators B: Chemical, 2003, 95, 107-110.      | 4.0  | 43        |
| 62 | Microstructural characterization of gold-doped silica-titania sol-gel films. Thin Solid Films, 1996, 279, 23-28.                                                          | 0.8  | 41        |
| 63 | Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Advances, 2015, 5, 20432-20439.                           | 1.7  | 38        |
| 64 | Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure<br>Relationship. Journal of Carbon Research, 2021, 7, 2.                          | 1.4  | 38        |
| 65 | Photocurable glycidoxypropyltrimethoxysilane based sol-gel hybrid materials. Progress in Solid State<br>Chemistry, 2006, 34, 223-229.                                     | 3.9  | 37        |
| 66 | Thermal Stability of Lysozyme Langmuirâ^'Schaefer Films by FTIR Spectroscopy. Langmuir, 2007, 23,<br>1147-1151.                                                           | 1.6  | 36        |
| 67 | Crystallization in Hybrid Organicâ^'Inorganic Materials Induced by Self-Organization in Basic<br>Conditions. Chemistry of Materials, 2007, 19, 1946-1953.                 | 3.2  | 36        |
| 68 | Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray<br>lithography. Journal of Materials Chemistry, 2011, 21, 3597.         | 6.7  | 36        |
| 69 | FTIR nanobiosensors for <i>Escherichia coli</i> detection. Beilstein Journal of Nanotechnology, 2012, 3, 485-492.                                                         | 1.5  | 36        |
| 70 | Materials for Photonic Applications From Sol-Gel*. , 2000, 4, 151-165.                                                                                                    |      | 35        |
| 71 | Solâ^'Gel Synthesis of β-Al2TiO5Thin Films at Low Temperature. Chemistry of Materials, 2000, 12, 517-524.                                                                 | 3.2  | 35        |
| 72 | Thermal-induced phase transitions in self-assembled mesostructured films studied by small-angle<br>X-ray scattering. Journal of Synchrotron Radiation, 2005, 12, 734-738. | 1.0  | 35        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A MOF-based carrier for <i>in situ</i> dopamine delivery. RSC Advances, 2018, 8, 25664-25672.                                                                                                                                    | 1.7  | 35        |
| 74 | Writing Self-Assembled Mesostructured Films with In situ Formation of Gold Nanoparticles.<br>Chemistry of Materials, 2010, 22, 2132-2137.                                                                                        | 3.2  | 34        |
| 75 | Selfâ€Organized Nanocrystalline Organosilicates in Organicâ€Inorganic Hybrid Films. Advanced Materials,<br>2009, 21, 1732-1736.                                                                                                  | 11.1 | 33        |
| 76 | Hard X-rays meet soft matter: when bottom-up and top-down get along well. Soft Matter, 2012, 8, 3722.                                                                                                                            | 1.2  | 33        |
| 77 | Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films.<br>Physical Chemistry Chemical Physics, 2014, 16, 25809-25818.                                                                     | 1.3  | 32        |
| 78 | Poled Sol-Gel Materials With Heterocycle Push-Pull Chromophores that Confer Enhanced<br>Second-Order Optical Nonlinearity. Advanced Functional Materials, 2004, 14, 1160-1166.                                                   | 7.8  | 31        |
| 79 | From 2-D to 0-D Boron Nitride Materials, The Next Challenge. Materials, 2019, 12, 3905.                                                                                                                                          | 1.3  | 31        |
| 80 | 2D Boron Nitride Heterostructures: Recent Advances and Future Challenges. Small Structures, 2021, 2, 2100068.                                                                                                                    | 6.9  | 31        |
| 81 | Highly ordered self-assembled mesostructured membranes: Porous structure and pore surface coverage. Microporous and Mesoporous Materials, 2007, 103, 113-122.                                                                    | 2.2  | 30        |
| 82 | Hafnia sol-gel films synthesized from HfCl4: Changes of structure and properties with the firing temperature. Journal of Sol-Gel Science and Technology, 2007, 42, 89-93.                                                        | 1.1  | 30        |
| 83 | Optical Limiting Devices Based on C60 Derivatives in Sol-Gel Hybrid Organic-Inorganic Materials.<br>Journal of Sol-Gel Science and Technology, 2000, 19, 263-266.                                                                | 1.1  | 29        |
| 84 | Raman microspectroscopy as a non-invasive tool to assess the vitrification-induced changes of ovine oocyte zona pellucida. Cryobiology, 2012, 64, 267-272.                                                                       | 0.3  | 29        |
| 85 | Confined growth of iron cobalt nanocrystals in mesoporous silica thin films: FeCo–SiO2<br>nanocomposites. Microporous and Mesoporous Materials, 2008, 115, 338-344.                                                              | 2.2  | 28        |
| 86 | Solâ€Gel Chemistry for Carbon Dots. Chemical Record, 2018, 18, 1192-1202.                                                                                                                                                        | 2.9  | 28        |
| 87 | Sol–Gel Processing of Bi <sub>2</sub> Ti <sub>2</sub> O <sub>7</sub> and<br>Bi <sub>2</sub> Ti <sub>4</sub> O <sub>11</sub> Films with Photocatalytic Activity. Journal of the<br>American Ceramic Society, 2010, 93, 2897-2902. | 1.9  | 27        |
| 88 | Exfoliated Graphene into Highly Ordered Mesoporous Titania Films: Highly Performing<br>Nanocomposites from Integrated Processing. ACS Applied Materials & Interfaces, 2014, 6, 795-802.                                          | 4.0  | 27        |
| 89 | Sol–gel chemistry for graphene–silica nanocomposite films. New Journal of Chemistry, 2014, 38,<br>3777-3782.                                                                                                                     | 1.4  | 27        |
| 90 | Kinetics of polycondensation reactions during self-assembly of mesostructured films studied by in situ infrared spectroscopy. Chemical Communications, 2005, , 2384.                                                             | 2.2  | 26        |

| #   | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Densification of sol–gel silica thin films induced by hard X-rays generated by synchrotron radiation.<br>Journal of Synchrotron Radiation, 2011, 18, 280-286.                                                                                                                                                 | 1.0 | 26        |
| 92  | Photodegradation of rhodamine 6G dimers in silica sol–gel films. Journal of Photochemistry and<br>Photobiology A: Chemistry, 2013, 271, 93-98.                                                                                                                                                                | 2.0 | 26        |
| 93  | Preparation of coating films doped with gold metal particles from<br>methyltriethoxysilane-tetraethoxysilane solutions. Journal of Sol-Gel Science and Technology, 1994, 1,<br>305-318.                                                                                                                       | 1.1 | 25        |
| 94  | Highly Ordered Self-Assembled Mesostructured Hafnia Thin Films:Â An Example of Rewritable<br>Mesostructure. Chemistry of Materials, 2006, 18, 4553-4560.                                                                                                                                                      | 3.2 | 25        |
| 95  | Sol–gel chemistry: from self-assembly to complex materials. Journal of Sol-Gel Science and Technology, 2011, 60, 226-235.                                                                                                                                                                                     | 1.1 | 25        |
| 96  | Molecularly imprinted La-doped mesoporous titania films with hydrolytic properties toward organophosphate pesticides. New Journal of Chemistry, 2013, 37, 2995.                                                                                                                                               | 1.4 | 25        |
| 97  | Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology, 2016, 85, 1274-1281.e3.                                                                                                                                    | 0.9 | 25        |
| 98  | Sensoristic Applications of Self-assembled Mesostructured Silica Films. Sensor Letters, 2003, 1, 64-70.                                                                                                                                                                                                       | 0.4 | 25        |
| 99  | Fullerenes in Sol-Gel Materials. Journal of Sol-Gel Science and Technology, 2001, 22, 189-204.                                                                                                                                                                                                                | 1.1 | 24        |
| 100 | One-pot self-assembly of mesostructured silica films and membranes functionalised with fullerene<br>derivativesElectronic supplementary information (ESI) available: selected analytical data of 2 and 3.<br>See http://www.rsc.org/suppdata/jm/b4/b401916d/. Journal of Materials Chemistry, 2004, 14, 1838. | 6.7 | 24        |
| 101 | Electrical responses of silica mesostructured films to changes in environmental humidity and processing conditions. Journal of Non-Crystalline Solids, 2005, 351, 1980-1986.                                                                                                                                  | 1.5 | 24        |
| 102 | Boron oxynitride two-colour fluorescent dots and their incorporation in a hybrid organic-inorganic film. Journal of Colloid and Interface Science, 2020, 560, 398-406.                                                                                                                                        | 5.0 | 24        |
| 103 | Ordered Mesostructured Silica Films: Effect of Pore Surface on its Sensing Properties. Journal of Sol-Gel Science and Technology, 2004, 32, 107-110.                                                                                                                                                          | 1.1 | 23        |
| 104 | Design of hybrid organic–inorganic materials through their structure control: The case of epoxy<br>bearing alkoxides. Journal of Non-Crystalline Solids, 2008, 354, 1615-1626.                                                                                                                                | 1.5 | 23        |
| 105 | Shaping Mesoporous Films Using Dewetting on X-ray Pre-patterned Hydrophilic/Hydrophobic Layers and Pinning Effects at the Pattern Edge. Langmuir, 2011, 27, 3898-3905.                                                                                                                                        | 1.6 | 23        |
| 106 | Basic Catalyzed Synthesis of Hybrid Sol-Gel Materials Based on 3-Glycidoxypropyltrimethoxysilane.<br>Journal of Sol-Gel Science and Technology, 2003, 26, 303-306.                                                                                                                                            | 1.1 | 22        |
| 107 | Correlative Analysis of the Crystallization of Solâ^Gel Dense and Mesoporous Anatase Titania Films.<br>Journal of Physical Chemistry C, 2010, 114, 22385-22391.                                                                                                                                               | 1.5 | 22        |
| 108 | Chemical Tailoring of Hybrid Solâ^'Gel Thick Coatings As Hosting Matrix for Functional Patterned Microstructures. ACS Applied Materials & Interfaces, 2011, 3, 245-251.                                                                                                                                       | 4.0 | 22        |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Combining Top-Down and Bottom-Up Routes for Fabrication of Mesoporous Titania Films Containing<br>Ceria Nanoparticles for Free Radical Scavenging. ACS Applied Materials & Interfaces, 2013, 5,<br>3168-3175.                                               | 4.0  | 22        |
| 110 | Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. Journal of Physical Chemistry C, 2014, 118, 12000-12009.                                                                                                            | 1.5  | 22        |
| 111 | Methyltriethoxysilane-derived sol-gel coatings doped with silver metal particles. Journal of Sol-Gel<br>Science and Technology, 1994, 3, 229-233.                                                                                                           | 1.1  | 21        |
| 112 | Mesoporous Aluminophosphate Thin Films with Cubic Pore Arrangement. Langmuir, 2008, 24, 6220-6225.                                                                                                                                                          | 1.6  | 21        |
| 113 | Self-Assembly of Shape Controlled Hierarchical Porous Thin Films: Mesopores and Nanoboxes.<br>Chemistry of Materials, 2009, 21, 4846-4850.                                                                                                                  | 3.2  | 21        |
| 114 | Innovative Composite Films of Chitosan, Methylcellulose, and Nanoparticles. Journal of Food Science, 2011, 76, N54-60.                                                                                                                                      | 1.5  | 21        |
| 115 | Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. New Journal of<br>Chemistry, 2014, 38, 1635-1640.                                                                                                                         | 1.4  | 21        |
| 116 | Photoâ€Fabrication of Titania Hybrid Films with Tunable Hierarchical Structures and Stimuliâ€Responsive<br>Properties. Advanced Materials, 2010, 22, 3303-3306.                                                                                             | 11.1 | 20        |
| 117 | Release of Ceria Nanoparticles Grafted on Hybrid Organic–Inorganic Films for Biomedical Application.<br>ACS Applied Materials & Interfaces, 2012, 4, 3916-3922.                                                                                             | 4.0  | 20        |
| 118 | Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes. Reproduction, Fertility and Development, 2017, 29, 1046.                                                                          | 0.1  | 20        |
| 119 | Modulating the Optical Properties of Citrazinic Acid through the Monomer-to-Dimer Transformation.<br>Journal of Physical Chemistry A, 2020, 124, 197-203.                                                                                                   | 1.1  | 20        |
| 120 | Anomalous Optical Properties of Citrazinic Acid under Extreme pH Conditions. ACS Omega, 2020, 5, 10958-10964.                                                                                                                                               | 1.6  | 20        |
| 121 | Deep Xâ€ray Lithography for Direct Patterning of PECVD Films. Plasma Processes and Polymers, 2010, 7, 459-465.                                                                                                                                              | 1.6  | 19        |
| 122 | Mesoporous materials as platforms for surface-enhanced Raman scattering. TrAC - Trends in<br>Analytical Chemistry, 2019, 114, 233-241.                                                                                                                      | 5.8  | 19        |
| 123 | Understanding sol–gel transition through a picture. A short tutorial. Journal of Sol-Gel Science and<br>Technology, 2020, 94, 544-550.                                                                                                                      | 1.1  | 19        |
| 124 | Formation of cerium titanate, CeTi2O6, in sol–gel films studied by XRD and FAR infrared spectroscopy.<br>Journal of Sol-Gel Science and Technology, 2009, 52, 356-361.                                                                                      | 1.1  | 18        |
| 125 | Water Evaporation Studied by In Situ Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 2745-2749.                                                                                                                            | 1.1  | 18        |
| 126 | IR and X-ray time-resolved simultaneous experiments:Âan opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2012, 19, 892-904. | 1.0  | 18        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Improving the Selective Efficiency of Graphene-Mediated Enhanced Raman Scattering through<br>Molecular Imprinting. ACS Applied Materials & Interfaces, 2016, 8, 34098-34107.                            | 4.0 | 18        |
| 128 | Stain Effects Studied by Time-Resolved Infrared Imaging. Analytical Chemistry, 2009, 81, 551-556.                                                                                                       | 3.2 | 17        |
| 129 | Hybrid Organicâ^'Inorganic Mesostructured Membranes: Interfaces and Organization at Different<br>Length Scales. Journal of Physical Chemistry C, 2010, 114, 11730-11740.                                | 1.5 | 17        |
| 130 | Controlling the Processing of Mesoporous Titania Films by in Situ FTIR Spectroscopy: Getting<br>Crystalline Micelles into the Mesopores. Journal of Physical Chemistry C, 2010, 114, 10806-10811.       | 1.5 | 17        |
| 131 | Strain-driven self-rolling of hybrid organic–inorganic microrolls: interfaces with self-assembled particles. NPG Asia Materials, 2012, 4, e22-e22.                                                      | 3.8 | 17        |
| 132 | Defect-assisted photoluminescence in hexagonal boron nitride nanosheets. 2D Materials, 2020, 7,<br>045023.                                                                                              | 2.0 | 17        |
| 133 | Borosilicate coatings on mild steel prepared from aqueous amine solutions: A comparison with the alkoxide routes. Journal of the European Ceramic Society, 1995, 15, 337-342.                           | 2.8 | 16        |
| 134 | Entrapping of Push-Pull Zwitterionic Chromophores in Hybrid Matrices for Photonic Applications.<br>Journal of Sol-Gel Science and Technology, 2003, 26, 967-970.                                        | 1.1 | 16        |
| 135 | Perspectives in 1H, 14N and 81Br solid-state NMR studies of interfaces in materials textured by self-assembled amphiphiles. Comptes Rendus Chimie, 2010, 13, 431-442.                                   | 0.2 | 16        |
| 136 | Polypeptide binding to mesostructured titania films. Microporous and Mesoporous Materials, 2011, 142, 1-6.                                                                                              | 2.2 | 16        |
| 137 | Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing. Materials, 2018, 11, 1674.                                                                   | 1.3 | 16        |
| 138 | Time Resolved IR and X-Ray Simultaneous Spectroscopy: New Opportunities for the Analysis of Fast<br>Chemical-Physical Phenomena in Materials Science. Acta Physica Polonica A, 2009, 115, 489-500.      | 0.2 | 16        |
| 139 | Hybrid organic–inorganic materials containing poled zwitterionic push–pull chromophores. Journal of the European Ceramic Society, 2004, 24, 1853-1856.                                                  | 2.8 | 15        |
| 140 | In-situ study of sol–gel processing by time-resolved infrared spectroscopy. Journal of Sol-Gel Science<br>and Technology, 2008, 48, 253-259.                                                            | 1.1 | 15        |
| 141 | Structural Evolution during Evaporation of a 3-Glycidoxypropyltrimethoxysilane Film Studied in Situ<br>by Time Resolved Infrared Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 10438-10444. | 1.1 | 15        |
| 142 | X-rays to study, induce, and pattern structures in sol–gel materials. Journal of Sol-Gel Science and<br>Technology, 2011, 57, 236-244.                                                                  | 1,1 | 15        |
| 143 | A high volume and low damage route to hydroxyl functionalization of carbon nanotubes using hard<br>X-ray lithography. Carbon, 2013, 51, 430-434.                                                        | 5.4 | 15        |
| 144 | Introducing Ti-GERS: Raman Scattering Enhancement in Graphene-Mesoporous Titania Films. Journal of<br>Physical Chemistry Letters, 2015, 6, 3149-3154.                                                   | 2.1 | 15        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Carbon dots in ZnO macroporous films with controlled photoluminescence through defects engineering. RSC Advances, 2016, 6, 55393-55400.                                         | 1.7 | 15        |
| 146 | Hydrophobic Thin Films from Sol–Gel Processing: A Critical Review. Materials, 2021, 14, 6799.                                                                                   | 1.3 | 15        |
| 147 | Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 245-253.                                                                                                | 1.1 | 14        |
| 148 | An alternative sol–gel route for the preparation of thin films in CeO2–TiO2 binary system. Thin Solid<br>Films, 2010, 518, 1653-1657.                                           | 0.8 | 14        |
| 149 | Solâ€toâ€Gel Transition in Fast Evaporating Systems Observed by in Situ Timeâ€Resolved Infrared<br>Spectroscopy. ChemPhysChem, 2015, 16, 1933-1939.                             | 1.0 | 14        |
| 150 | Ferrates for water remediation. Reviews in Environmental Science and Biotechnology, 2017, 16, 15-35.                                                                            | 3.9 | 14        |
| 151 | Formation of Monoclinic Hafnium Titanate Thin Films Via the Sol–Gel Method. Journal of the<br>American Ceramic Society, 2008, 91, 2112-2116.                                    | 1.9 | 13        |
| 152 | Microfabrication of mesoporous silica encapsulated enzymes using deep X-ray lithography. Journal of<br>Materials Chemistry, 2012, 22, 16191.                                    | 6.7 | 13        |
| 153 | Nanoparticles in mesoporous films, a happy marriage for materials science. Journal of Nanoparticle<br>Research, 2018, 20, 1.                                                    | 0.8 | 13        |
| 154 | The Sol-to-Gel Transition. SpringerBriefs in Materials, 2019, , .                                                                                                               | 0.1 | 13        |
| 155 | Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. Nanoscale, 2021, 13, 16465-16476.                                                             | 2.8 | 13        |
| 156 | Poled sol–gel materials doped with heterocycle-based push–pull chromophores with second-order optical non-linearity. Journal of Non-Crystalline Solids, 2004, 345-346, 575-579. | 1.5 | 12        |
| 157 | Photocurable silica hybrid organic–inorganic films for photonic applications. Journal of Sol-Gel<br>Science and Technology, 2007, 44, 59-64.                                    | 1.1 | 12        |
| 158 | IKNO, a user facility for coherent terahertz and UV synchrotron radiation. Journal of Synchrotron<br>Radiation, 2008, 15, 655-659.                                              | 1.0 | 12        |
| 159 | Application of Terahertz Spectroscopy to Time-Dependent Chemical-Physical Phenomena. Journal of<br>Physical Chemistry A, 2009, 113, 9418-9423.                                  | 1.1 | 12        |
| 160 | Patterning block copolymer thin films by deep X-ray lithography. Soft Matter, 2010, 6, 3172.                                                                                    | 1.2 | 12        |
| 161 | Nanostructured thin films as surfaceâ€enhanced Raman scattering substrates. Journal of Raman<br>Spectroscopy, 2013, 44, 35-40.                                                  | 1.2 | 12        |
| 162 | Simultaneous Microfabrication and Tuning of the Permselective Properties in Microporous Polymers<br>Using Xâ€fay Lithography. Small, 2013, 9, 2277-2282.                        | 5.2 | 12        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Boron Nitride–Titania Mesoporous Film Heterostructures. Langmuir, 2021, 37, 5348-5355.                                                                                                           | 1.6 | 12        |
| 164 | Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 569-572.                                                                                                                 | 1.1 | 11        |
| 165 | Low temperature synthesis of MgxAl2(1â^'x)Ti(1+x)O5 films by sol–gel processing. Journal of the<br>European Ceramic Society, 2005, 25, 3587-3591.                                                | 2.8 | 11        |
| 166 | Bottom-up and top-down approach for periodic microstructures on thin oxide films by controlled photo-activated chemical processes. Journal of Sol-Gel Science and Technology, 2008, 48, 182-186. | 1.1 | 11        |
| 167 | Blue-emitting mesoporous films prepared via incorporation of luminescent Schiff base zinc(II) complex. Journal of Sol-Gel Science and Technology, 2008, 47, 283-289.                             | 1.1 | 11        |
| 168 | Self-Assembled Mesoporous Silicaâ^'Germania Films. Chemistry of Materials, 2008, 20, 3259-3265.                                                                                                  | 3.2 | 11        |
| 169 | Coffee stain-driven self-assembly of mesoporous rings. Microporous and Mesoporous Materials, 2012, 163, 356-362.                                                                                 | 2.2 | 11        |
| 170 | Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.<br>Journal of Synchrotron Radiation, 2012, 19, 586-590.                                        | 1.0 | 11        |
| 171 | Hard X-rays and soft-matter: processing of sol–gel films from a top down route. Journal of Sol-Gel<br>Science and Technology, 2014, 70, 236-244.                                                 | 1.1 | 11        |
| 172 | Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up andÂtop-down processing. Journal of Synchrotron Radiation, 2015, 22, 165-171.                         | 1.0 | 11        |
| 173 | In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. Journal of Sol-Gel Science and Technology, 2016, 79, 295-302.                                        | 1.1 | 11        |
| 174 | Mesoscale organization of titania thin films enables oxygen sensing at room temperature. Journal of<br>Materials Chemistry C, 2017, 5, 11815-11823.                                              | 2.7 | 11        |
| 175 | Thermal Induced Polymerization of <scp>l</scp> ‣ysine forms Branched Particles with Blue<br>Fluorescence. Macromolecular Chemistry and Physics, 2021, 222, 2100242.                              | 1.1 | 11        |
| 176 | Electro-optics poled sol–gel materials doped with heterocycle push–pull chromophores. Materials<br>Science and Engineering C, 2006, 26, 979-982.                                                 | 3.8 | 10        |
| 177 | Infrared and X-ray simultaneous spectroscopy: a novel conceptual beamline design for time resolved experiments. Analytical and Bioanalytical Chemistry, 2010, 397, 2095-2108.                    | 1.9 | 10        |
| 178 | Selective detection of organophosphate through molecularly imprinted GERSâ€active hybrid<br>organic–inorganic materials. Journal of Raman Spectroscopy, 2018, 49, 189-197.                       | 1.2 | 10        |
| 179 | Polymerizationâ€Driven Photoluminescence in Alkanolamineâ€Based Câ€Dots. Chemistry - A European<br>Journal, 2021, 27, 2543-2550.                                                                 | 1.7 | 10        |
| 180 | Real-time quantitative detection of styrene in atmosphere in presence of other volatile-organic compounds using a portable device. Talanta, 2021, 233, 122510.                                   | 2.9 | 10        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Formation of hybrid nano-crystals in organic–inorganic films from a basic sol. Journal of Sol-Gel<br>Science and Technology, 2009, 52, 408-414.                                                     | 1.1 | 9         |
| 182 | Pore-confined synthesis of mesoporous nanocrystalline La–Ce phosphate films for sensing applications. Journal of Materials Chemistry, 2012, 22, 20498.                                              | 6.7 | 9         |
| 183 | Crystallization in hybrid organic-inorganic materials through self-organization from<br>3-glycidoxypropyltrimethoxysilane. Journal of the Ceramic Society of Japan, 2011, 119, 387-392.             | 0.5 | 8         |
| 184 | Getting order in mesostructured thin films, from pore organization to crystalline walls, the case of 3-glycidoxypropyltrimethoxysilane. Physical Chemistry Chemical Physics, 2015, 17, 10679-10686. | 1.3 | 8         |
| 185 | Phenyl-modified hybrid organic-inorganic microporous films as high efficient platforms for styrene sensing. Microporous and Mesoporous Materials, 2020, 294, 109877.                                | 2.2 | 8         |
| 186 | Reversible Aggregation of Molecular-Like Fluorophores Driven by Extreme pH in Carbon Dots.<br>Materials, 2020, 13, 3654.                                                                            | 1.3 | 8         |
| 187 | Highly Photostable Carbon Dots from Citric Acid for Bioimaging. Materials, 2022, 15, 2395.                                                                                                          | 1.3 | 8         |
| 188 | Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties. Nanoscale Advances, 2020, 2, 2387-2396.                                   | 2.2 | 7         |
| 189 | Improving the Photocatalytic Activity of Mesoporous Titania Films through the Formation of WS2/TiO2 Nano-Heterostructures. Nanomaterials, 2022, 12, 1074.                                           | 1.9 | 7         |
| 190 | Mesostructured self-assembled silica films with reversible thermo-photochromic properties.<br>Microporous and Mesoporous Materials, 2009, 120, 375-380.                                             | 2.2 | 6         |
| 191 | From the Precursor to a Sol. SpringerBriefs in Materials, 2016, , 7-25.                                                                                                                             | 0.1 | 6         |
| 192 | Blocking viral infections with lysine-based polymeric nanostructures: a critical review. Biomaterials<br>Science, 2022, 10, 1904-1919.                                                              | 2.6 | 6         |
| 193 | Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores. , 1999, 3803, 18.                                                                   |     | 5         |
| 194 | $\hat{I}^3$ (glicydoxypropyl)-trymethoxysilane-based matrices tailored for optical limiting applications. , 1999, , .                                                                               |     | 5         |
| 195 | Absolute emission quantum yield determination of self-assembled mesoporous titania films grafted with a luminescent zinc complex. Inorganic Chemistry Communication, 2009, 12, 237-239.             | 1.8 | 5         |
| 196 | New opportunity to investigate physico-chemical phenomena: time-resolved X-ray and IR concurrent analysis. Rendiconti Lincei, 2011, 22, 59-79.                                                      | 1.0 | 5         |
| 197 | Micropattern Formation by Molecular Migration via UVâ€induced Dehydration of Block Copolymers.<br>Advanced Functional Materials, 2014, 24, 2801-2809.                                               | 7.8 | 5         |
| 198 | Hard X-rays for processing hybrid organic–inorganic thick films. Journal of Synchrotron Radiation, 2016, 23, 267-273.                                                                               | 1.0 | 5         |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Optical limiting based on multiphoton processes in carbon nanostructures and heterocyclic quadrupolar molecules. , 2003, , .                                                                      |     | 4         |
| 200 | Time-resolved techniques for infrared and terahertz characterization with synchrotron radiation of evaporating systems. Rendiconti Lincei, 2011, 22, 81-91.                                       | 1.0 | 4         |
| 201 | Responsive microstructures on organic–inorganic hybrid films. Journal of Sol-Gel Science and<br>Technology, 2014, 70, 272-277.                                                                    | 1.1 | 4         |
| 202 | Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.                                         | 0.8 | 4         |
| 203 | Magnetic core–shell nanoparticles coated with a molecularly imprinted organogel for<br>organophosphate hydrolysis. Journal of Sol-Gel Science and Technology, 2016, 79, 395-404.                  | 1.1 | 4         |
| 204 | Reactivity of silanol group on siloxane oligomers for designing molecular structure and surface wettability. Journal of Sol-Gel Science and Technology, 2021, 97, 734-742.                        | 1.1 | 4         |
| 205 | Engineering UV-emitting defects in h-BN nanodots by a top-down route. Applied Surface Science, 2021, 567, 150727.                                                                                 | 3.1 | 4         |
| 206 | The Birth of Fluorescence from Thermally Polymerized Glycine. Macromolecular Chemistry and Physics, 2022, 223, .                                                                                  | 1.1 | 4         |
| 207 | Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 577-580.                                                                                                                  | 1.1 | 3         |
| 208 | Microstructural Evolution and Order-Disorder Transitions in Mesoporous Silica Films Studied by FTIR<br>Spectroscopy. Materials Research Society Symposia Proceedings, 2002, 726, 1.               | 0.1 | 3         |
| 209 | Mesoporous Thin Films: Properties and Applications. NATO Science for Peace and Security Series C:<br>Environmental Security, 2008, , 105-123.                                                     | 0.1 | 3         |
| 210 | Mesoporous Thin Films: An Example of Pore Engineered Material. Key Engineering Materials, 2008, 391,<br>109-120.                                                                                  | 0.4 | 3         |
| 211 | Synchrotron radiation - a brilliant source for solid-state research in the infrared energy domain.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1999-2007.         | 0.8 | 3         |
| 212 | Simultaneous in situ and Time-Resolved Study of Hierarchical Porous Films Templated by Salt<br>Nanocrystals and Self-Assembled Micelles. Journal of Physical Chemistry C, 2011, 115, 12702-12707. | 1.5 | 3         |
| 213 | Liquid-Phase Preparation and Characterization of Zinc Oxide Nanoparticles. Particulate Science and Technology, 2012, 30, 32-42.                                                                   | 1.1 | 3         |
| 214 | Fluorescence-based selective nitrite ion sensing by amino-capped carbon dots. Environmental<br>Nanotechnology, Monitoring and Management, 2021, 16, 100573.                                       | 1.7 | 3         |
| 215 | Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O.<br>Nanomaterials, 2022, 12, 2351.                                                                            | 1.9 | 3         |
| 216 | Hybrid organic–inorganic films by assembling of Si–Zr-based nanobuilding blocks. Journal of the<br>European Ceramic Society, 2005, 25, 2051-2054.                                                 | 2.8 | 2         |

| #   | ARTICLE                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Photoluminescence of zinc oxide mesostructured films doped with Rhodamine 6G. Journal of<br>Photochemistry and Photobiology A: Chemistry, 2018, 357, 30-35.                                                        | 2.0 | 2         |
| 218 | The Precursors of the Sol-Gel Process. SpringerBriefs in Materials, 2019, , 7-19.                                                                                                                                  | 0.1 | 2         |
| 219 | Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection. ACS Omega, 2022, 7, 5670-5678.                                                                                        | 1.6 | 2         |
| 220 | Embedding Fullerenes in Thin Sol-Gel Films. Materials Research Society Symposia Proceedings, 1994,<br>359, 351.                                                                                                    | 0.1 | 1         |
| 221 | Controlling shape and dimensions of pores in organic–inorganic films: nanocubes and nanospheres.<br>New Journal of Chemistry, 2011, 35, 1624.                                                                      | 1.4 | 1         |
| 222 | Introduction: synchrotron radiation time resolved concurrent experiments—a new Italian route to<br>China. Rendiconti Lincei, 2011, 22, 3-4.                                                                        | 1.0 | 1         |
| 223 | Cosmic rays and radiobiology in a Sino-Italian network strategy: first bilateral workshop<br>COSMIC-RAD. Rendiconti Lincei, 2014, 25, 1-2.                                                                         | 1.0 | 1         |
| 224 | Structural Characterization of Hybrid Organic–Inorganic Materials. , 2018, , 1375-1397.                                                                                                                            |     | 1         |
| 225 | Investigations of time-dependent chemical-physical phenomena with THz spectroscopy. , 2010, , .                                                                                                                    |     | 0         |
| 226 | Effect of diphenyldiethoxysilane on the self-organized formation of nanocrystalline layered<br>organosilicates in organic–inorganic hybrid films. Journal of Sol-Gel Science and Technology, 2011,<br>60, 275-282. | 1.1 | 0         |
| 227 | Lithography of porous materials for device fabrication. , 2011, , .                                                                                                                                                |     | 0         |
| 228 | A Sol and a Gel, What They Are?. SpringerBriefs in Materials, 2016, , 1-6.                                                                                                                                         | 0.1 | 0         |
| 229 | Greener Chemistry for Hybrid Materials, Alcoholâ€Free Synthesis with an Epoxyâ€Cyclohexyl Precursor.<br>Macromolecular Materials and Engineering, 2017, 302, 1600394.                                              | 1.7 | 0         |
| 230 | Probing the Sol to Gel Transition in the Gel Structure. SpringerBriefs in Materials, 2019, , 85-95.                                                                                                                | 0.1 | 0         |
| 231 | A Sol and a Gel, What Are They?. SpringerBriefs in Materials, 2019, , 1-6.                                                                                                                                         | 0.1 | 0         |
| 232 | 3D Spatially Controlled Chemical Functionalization on Alumina Membranes. Science of Advanced Materials, 2014, 6, 1520-1524.                                                                                        | 0.1 | 0         |
| 233 | Probing the Sol-to-Gel Transition in the Gel Structure. SpringerBriefs in Materials, 2016, , 63-72.                                                                                                                | 0.1 | 0         |
|     |                                                                                                                                                                                                                    |     |           |

234 Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.

0

| #   | Article                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Structural Characterization of Hybrid Organic–Inorganic Materials. , 2016, , 1-23.                           |     | 0         |
| 236 | Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.                                       |     | 0         |
| 237 | Mesoporous Materials and Self-assembly. Advances in Sol-gel Derived Materials and Technologies, 2022, , 1-6. | 0.3 | 0         |