List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265, 115-121.	4.3	1,177
2	Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002, 26, 1167-1170.	2.8	724
3	Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 2003, 244, 383-391.	4.3	544
4	Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nature Catalysis, 2021, 4, 374-384.	34.4	474
5	Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Applied Catalysis B: Environmental, 2016, 192, 193-198.	20.2	292
6	Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. Journal of Physical Chemistry C, 2009, 113, 3062-3069.	3.1	280
7	Unique Effects of Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide. Journal of Physical Chemistry B, 1997, 101, 6415-6419.	2.6	193
8	Trapping-Induced Enhancement of Photocatalytic Activity on Brookite TiO ₂ Powders: Comparison with Anatase and Rutile TiO ₂ Powders. ACS Catalysis, 2017, 7, 2644-2651.	11.2	191
9	Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. Journal of CO2 Utilization, 2014, 6, 17-25.	6.8	189
10	Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Applied Catalysis A: General, 2008, 348, 148-152.	4.3	159
11	Degradation of Methylene Blue on Carbonate Species-doped TiO2Photocatalysts under Visible Light. Chemistry Letters, 2004, 33, 750-751.	1.3	150
12	Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation. Applied Catalysis B: Environmental, 2014, 150-151, 479-485.	20.2	106
13	Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride. Applied Catalysis B: Environmental, 2013, 142-143, 362-367.	20.2	101
14	Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. Journal of Molecular Catalysis A, 2009, 300, 72-79.	4.8	92
15	Morphology control and characterization of broom-like porous CeO2. Chemical Engineering Journal, 2015, 260, 126-132.	12.7	91
16	Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance. Applied Catalysis B: Environmental, 2019, 243, 513-521.	20.2	88
17	Photocatalytic reduction of CO2 over exposed-crystal-face-controlled TiO2 nanorod having a brookite phase with co-catalyst loading. Applied Catalysis B: Environmental, 2014, 152-153, 309-316.	20.2	83
18	Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 61-71.	20.2	79

#	Article	IF	CITATIONS
19	Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence of poly(vinyl pyrrolidone). Applied Catalysis B: Environmental, 2009, 91, 634-639.	20.2	75
20	Synthesis high specific surface area nanotube g-C ₃ N ₄ with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Advances, 2015, 5, 4026-4029.	3.6	75
21	Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Applied Catalysis B: Environmental, 2021, 282, 119589.	20.2	74
22	Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Applied Catalysis B: Environmental, 2020, 271, 118917.	20.2	72
23	Bifunctionality of Rh ³⁺ Modifier on TiO ₂ and Working Mechanism of Rh ³⁺ /TiO ₂ Photocatalyst under Irradiation of Visible Light. Journal of Physical Chemistry C, 2013, 117, 11008-11016.	3.1	67
24	Co3O4/Ni-based MOFs on carbon cloth for flexible alkaline battery-supercapacitor hybrid devices and near-infrared photocatalytic hydrogen evolution. Electrochimica Acta, 2018, 281, 189-197.	5.2	66
25	Defect as the essential factor in engineering carbon-nitride-based visible-light-driven Z-scheme photocatalyst. Applied Catalysis B: Environmental, 2020, 260, 118145.	20.2	62
26	Development of a visible-light-responsive rutile rod by site-selective modification of iron(III) ion on {1 1 1} exposed crystal faces. Applied Catalysis B: Environmental, 2010, 97, 115-119.	20.2	61
27	Dependence of Photocatalytic Activity on Aspect Ratio of Shape-Controlled Rutile Titanium(IV) Oxide Nanorods. Journal of Physical Chemistry C, 2011, 115, 419-424.	3.1	59
28	Dependence of Activity of Rutile Titanium(IV) Oxide Powder for Photocatalytic Overall Water Splitting on Structural Properties. Journal of Physical Chemistry C, 2014, 118, 9093-9100.	3.1	59
29	Synthesis and photocatalytic performance of yttrium-doped CeO2 with a porous broom-like hierarchical structure. Applied Catalysis B: Environmental, 2016, 183, 361-370.	20.2	57
30	Improving g-C 3 N 4 photocatalytic performance by hybridizing with Bi 2 O 2 CO 3 nanosheets. Catalysis Today, 2017, 284, 27-36.	4.4	54
31	Synthesis and photocatalytic performance of yttrium-doped CeO2 with a hollow sphere structure. Catalysis Today, 2017, 281, 135-143.	4.4	52
32	Design and Synthesis of Sm, Y, La and Ndâ€doped CeO ₂ with a broomâ€like hierarchical structure: a photocatalyst with enhanced oxidation performance. ChemCatChem, 2020, 12, 2638-2646.	3.7	51
33	Boosting visible-light-driven photocatalytic performance of waxberry-like CeO2 by samarium doping and silver QDs anchoring. Applied Catalysis B: Environmental, 2021, 286, 119845.	20.2	51
34	Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 2015, 174-175, 471-476.	20.2	46
35	Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping. ACS Omega, 2018, 3, 15009-15017.	3.5	46
36	Constructing hydrogen bond based melam/WO3 heterojunction with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2017, 205, 569-575.	20.2	45

#	Article	IF	CITATIONS
37	Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Applied Catalysis B: Environmental, 2017, 211, 11-17.	20.2	45
38	Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions. Catalysis Communications, 2009, 10, 963-966.	3.3	43
39	Hydrogen bonds in heterojunction photocatalysts for efficient charge transfer. Applied Catalysis B: Environmental, 2018, 234, 198-205.	20.2	43
40	Black phosphorus: an efficient co-catalyst for charge separation and enhanced photocatalytic hydrogen evolution. Journal of Materials Science, 2018, 53, 16557-16566.	3.7	43
41	Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Advances, 2014, 4, 62255-62261.	3.6	39
42	Morphology control and photocatalytic characterization of yttrium-doped hedgehog-like CeO2. Applied Catalysis B: Environmental, 2015, 164, 120-127.	20.2	39
43	Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven photocatalytic CO2 reforming to CH4. Journal of Hazardous Materials, 2020, 393, 122324.	12.4	39
44	Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption. Applied Surface Science, 2019, 491, 328-334.	6.1	38
45	Development of the Visibleâ€Light Response of CeO _{2â^<i>x</i>} with a high Ce ³⁺ Content and Its Photocatalytic Properties. ChemCatChem, 2018, 10, 1267-1271.	3.7	37
46	A new precursor to synthesize g-C ₃ N ₄ with superior visible light absorption for photocatalytic application. Catalysis Science and Technology, 2017, 7, 1826-1830.	4.1	35
47	Charge Transfer Doping Modulated Raman Scattering and Enhanced Stability of Black Phosphorus Quantum Dots on a ZnO Nanorod. Advanced Optical Materials, 2018, 6, 1800440.	7.3	34
48	Effect of chemical etching by sulfuric acid or H2O2–NH3 mixed solution on the photocatalytic activity of rutile TiO2 nanorods. Applied Catalysis A: General, 2010, 380, 48-54.	4.3	32
49	A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catalysis Today, 2018, 315, 184-193.	4.4	32
50	Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. Journal of Molecular Catalysis A, 2015, 396, 261-267.	4.8	31
51	High visible-light active Ir-doped-TiO2 brookite photocatalyst synthesized by hydrothermal microwave-assisted process. Catalysis Today, 2014, 230, 214-220.	4.4	29
52	Oxygen induced enhancement of NIR emission in brookite TiO ₂ powders: comparison with rutile and anatase TiO ₂ powders. Physical Chemistry Chemical Physics, 2018, 20, 3241-3248.	2.8	28
53	Novel cerium-based MOFs photocatalyst for photocarrier collaborative performance under visible light. Journal of Catalysis, 2022, 405, 74-83.	6.2	27
54	Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading. Journal of Hazardous Materials, 2012, 211-212, 83-87.	12.4	26

#	Article	IF	CITATIONS
55	Visible light-driven H2O2 synthesis by a Cu3BiS3 photocathode via a photoelectrochemical indirect two-electron oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121152.	20.2	25
56	A facile approach to fabricating carbonaceous material/g-C3N4 composites with superior photocatalytic activity. Catalysis Today, 2018, 315, 149-154.	4.4	24
57	Development of visible-light-responsive morphology-controlled brookite TiO2 nanorods by site-selective loading of AuAg bimetallic nanoparticles. Applied Catalysis B: Environmental, 2019, 245, 681-690.	20.2	24
58	Infrared response in photocatalytic polymeric carbon nitride for water splitting via an upconversion mechanism. Communications Materials, 2020, 1, .	6.9	23
59	Ce-Doped Graphitic Carbon Nitride Derived from Metal Organic Frameworks as a Visible Light-Responsive Photocatalyst for H2 Production. Nanomaterials, 2019, 9, 1539.	4.1	20
60	Solarâ€Driven Hydrogen Generation Catalyzed by gâ€C ₃ N ₄ with Poly(platinaynes) as Efficient Electron Donor at Low Platinum Content. Advanced Science, 2021, 8, 2002465.	11.2	20
61	Solar-driven H2 evolution over CuNb2O6: Effect of two polymorphs (monoclinic and orthorhombic) on optical property and photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 263-271.	3.9	19
62	Multifunctional Zn–Al layered double hydroxides for surface-enhanced Raman scattering and surface-enhanced infrared absorption. Dalton Transactions, 2019, 48, 426-434.	3.3	17
63	A Fluorescence Probe for Metal Ions Based on Black Phosphorus Quantum Dots. Advanced Materials Interfaces, 2020, 7, 1902075.	3.7	17
64	Development of Plasmonic Photocatalyst by Siteâ€selective Loading of Bimetallic Nanoparticles of Au and Ag on Titanium(IV) Oxide. ChemCatChem, 2020, 12, 3783-3792.	3.7	16
65	Controlled structure of anatase TiO2 nanoparticles by using organic additives in a microwave process. Applied Catalysis A: General, 2011, 406, 119-123.	4.3	11
66	Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds. Rare Metals, 2015, 34, 291-300.	7.1	11
67	Photoinduced electron transfer in semiconductor–clay binary nanosheet colloids controlled by clay particles as a turnout switch. Applied Catalysis B: Environmental, 2019, 241, 499-505.	20.2	10
68	Direct Imaging of Atomic-Scale Surface Structures of Brookite TiO ₂ Nanoparticles by Frequency Modulation Atomic Force Microscopy in Liquid. Journal of Physical Chemistry C, 2018, 122, 24085-24093.	3.1	9
69	Effects of the Atmosphere in a Hydrothermal Process on the Morphology and Photocatalytic Activity of Cerium Oxide. ChemCatChem, 2018, 10, 4269-4273.	3.7	9
70	Stannous oxide promoted charge separation in rationally designed heterojunction photocatalysts with a controllable mechanism. Dalton Transactions, 2018, 47, 12734-12741.	3.3	9
71	Nitrogen and sulfur co-doped CeO ₂ nanorods for efficient photocatalytic VOCs degradation. Catalysis Science and Technology, 2022, 12, 5203-5209.	4.1	9
72	Carbon Nitride Functionalized with Sb Resulting in High Photocatalytic Activity. ACS Applied Energy Materials, 2021, 4, 5677-5686.	5.1	8

#	Article	IF	CITATIONS
73	Fe(III)-Pt(II) oxide-co-sensitized brookite TiO2 nanorods for photocatalytic degradation of acetaldehyde under visible light. Applied Catalysis A: General, 2022, 634, 118539.	4.3	5
74	Fabrication and characterization of sesame ball-like CeO2:Y3+/P(St–AA) composite microspheres based on electrostatic interaction. Materials Letters, 2014, 121, 109-112.	2.6	3
75	Low-temperature preparation of a molybdenum oxide hole collection layer by using a peroxo precursor for polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 522-528.	6.2	2
76	Effective Photocatalytic Hydrogen Evolution Using Covalent Triazine Framework-Derived Carbon Nitride Nanofiber Containing Carbon Vacancies for Visible-Light-Driven. Applied Sciences (Switzerland), 2021, 11, 7222.	2.5	2
77	Functionalized Graphitic Carbon Nitrides for Photocatalytic H ₂ O ₂ Production: Desired Properties Leading to Rational Catalyst Design. KONA Powder and Particle Journal, 2023, 40, 124-148.	1.7	2
78	Development of Visible Light Responsive Morphology Controlled TiO2 Photocatalyst. Nanostructure Science and Technology, 2016, , 79-98.	0.1	1