
Teresa Musumeci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLA/PLGA nanoparticles for sustained release of docetaxel. International Journal of Pharmaceutics, 2006, 325, 172-179.	2.6	383
2	Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. Journal of Pharmacy and Bioallied Sciences, 2011, 3, 4.	0.2	102
3	Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics, 2021, 13, 327.	2.0	100
4	Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. International Journal of Pharmaceutics, 2013, 440, 135-140.	2.6	89
5	Epilepsy Disease and Nose-to-Brain Delivery of Polymeric Nanoparticles: An Overview. Pharmaceutics, 2019, 11, 118.	2.0	83
6	Mediterranean essential oils as precious matrix components and active ingredients of lipid nanoparticles. International Journal of Pharmaceutics, 2018, 548, 217-226.	2.6	71
7	FA-loaded lipid drug delivery systems: Preparation, characterization and biological studies. European Journal of Pharmaceutical Sciences, 2014, 52, 12-20.	1.9	70
8	Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids and Surfaces B: Biointerfaces, 2017, 154, 297-306.	2.5	64
9	Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 309-320.	2.0	64
10	Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 288-293.	2.0	63
11	Clotrimazole-Loaded Mediterranean Essential Oils NLC: A Synergic Treatment of Candida Skin Infections. Pharmaceutics, 2019, 11, 231.	2.0	59
12	The "fate―of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. Journal of Drug Delivery Science and Technology, 2016, 32, 66-76.	1.4	58
13	Nose-to-Brain Delivery: Evaluation of Polymeric Nanoparticles on Olfactory Ensheathing Cells Uptake. Journal of Pharmaceutical Sciences, 2014, 103, 628-635.	1.6	53
14	Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110705.	2.5	45
15	Nanotechnological Approach to Increase the Antioxidant and Cytotoxic Efficacy of Crocin and Crocetin. Planta Medica, 2019, 85, 258-265.	0.7	41
16	Lyoprotected Nanosphere Formulations for Paclitaxel Controlled Delivery. Journal of Nanoscience and Nanotechnology, 2006, 6, 3118-3125.	0.9	40
17	Optimization of Curcumin Nanocrystals as Promising Strategy for Nose-to-Brain Delivery Application. Pharmaceutics, 2020, 12, 476.	2.0	39
18	Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity. BMC Cancer, 2008, 8, 212.	1.1	36

Teresa Musumeci

#	Article	IF	CITATIONS
19	Antioxidant potential of different melatonin-loaded nanomedicines in an experimental model of sepsis. Experimental Biology and Medicine, 2012, 237, 670-677.	1.1	36
20	The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC. Colloids and Surfaces B: Biointerfaces, 2014, 121, 1-10.	2.5	35
21	Micelle-nanogel platform for ferulic acid ocular delivery. International Journal of Pharmaceutics, 2020, 576, 118986.	2.6	33
22	Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharmaceutical Development and Technology, 2018, 23, 265-274.	1.1	31
23	Nanotechnologies for intranasal drug delivery: an update of literature. Pharmaceutical Development and Technology, 2021, 26, 824-845.	1.1	31
24	Ferulic Acid-NLC with Lavandula Essential Oil: A Possible Strategy for Wound-Healing?. Nanomaterials, 2020, 10, 898.	1.9	30
25	Innovative hybrid vs polymeric nanocapsules: The influence of the cationic lipid coating on the "4S― Colloids and Surfaces B: Biointerfaces, 2016, 141, 450-457.	2.5	28
26	Tangential Flow Filtration Technique: An Overview on Nanomedicine Applications. Pharmaceutical Nanotechnology, 2018, 6, 48-60.	0.6	28
27	Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. Colloids and Surfaces B: Biointerfaces, 2018, 167, 337-344.	2.5	27
28	Eco-friendly aqueous core surface-modified nanocapsules. Colloids and Surfaces B: Biointerfaces, 2015, 125, 190-196.	2.5	26
29	Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Delivery and Translational Research, 2022, 12, 1991-2006.	3.0	24
30	Poly(3-hydroxybutyrate-co-É›-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-É›-caprolactone) terpolymers as novel materials for colloidal drug delivery systems. European Journal of Pharmaceutical Sciences, 2009, 37, 451-462.	1.9	22
31	Nanostructured lipid carriers of essential oils as potential tools for the sustainable control of insect pests. Industrial Crops and Products, 2022, 181, 114766.	2.5	21
32	Ferulic Acid-Loaded Polymeric Nanoparticles for Potential Ocular Delivery. Pharmaceutics, 2021, 13, 687.	2.0	20
33	Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants, 2021, 10, 1075.	2.2	19
34	Hyaluronan/Poly-L-lysine/Berberine Nanogels for Impaired Wound Healing. Pharmaceutics, 2021, 13, 34.	2.0	19
35	The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. European Journal of Pharmacology, 2017, 796, 62-68.	1.7	18
36	Design and optimization of PEGylated nanoparticles intended for Berberine Chloride delivery. Journal of Drug Delivery Science and Technology, 2019, 52, 521-530.	1.4	18

TERESA MUSUMECI

#	Article	IF	CITATIONS
37	Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. Nanomaterials, 2021, 11, 159.	1.9	17
38	Effects of external phase on D-cycloserine loaded W/O nanocapsules prepared byÂthe interfacial polymerization method. European Journal of Medicinal Chemistry, 2011, 46, 2828-2834.	2.6	14
39	A physico-chemical study on amphiphilic cyclodextrin/liposomes nanoassemblies with drug carrier potential. Journal of Liposome Research, 2020, 30, 407-416.	1.5	14
40	mPEG-PLGA Nanoparticles Labelled with Loaded or Conjugated Rhodamine-B for Potential Nose-to-Brain Delivery. Pharmaceutics, 2021, 13, 1508.	2.0	14
41	Antioxidant activity and photostability assessment of trans-resveratrol acrylate microspheres. Pharmaceutical Development and Technology, 2019, 24, 222-234.	1.1	13
42	Essential Oil-Loaded NLC for Potential Intranasal Administration. Pharmaceutics, 2021, 13, 1166.	2.0	13
43	Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer's Disease. Biomedicines, 2022, 10, 985.	1.4	13
44	Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis. Pharmaceutics, 2021, 13, 503.	2.0	12
45	Phenols recovered from olive mill wastewater as natural booster to fortify blood orange juice. Food Chemistry, 2022, 393, 133428.	4.2	12
46	Quality by design tools reducing the gap from bench to bedside for nanomedicine. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 144-155.	2.0	11
47	Development and biocompatibility assessments of poly(3-hydroxybutyrate-co-ε-caprolactone) microparticles for diclofenac sodium delivery. Journal of Drug Delivery Science and Technology, 2020, 60, 102081.	1.4	10
48	Optimization of dextran sulfate/poly-l-lysine based nanogels polyelectrolyte complex for intranasal ovalbumin delivery. Journal of Drug Delivery Science and Technology, 2021, 65, 102678.	1.4	10
49	Development of a Liposome Formulation for D-Cycloserine Local Delivery. Journal of Liposome Research, 2008, 18, 211-224.	1.5	9
50	Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications. Pharmaceutics, 2022, 14, 691.	2.0	9
51	Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics, 2022, 14, 955.	2.0	8
52	Development, Optimization and Characterization of Eudraguard®-Based Microparticles for Colon Delivery. Pharmaceuticals, 2020, 13, 131.	1.7	7
53	Evaluation of Eudragit® Retard Polymers for the Microencapsulation of Alpha-Lipoic Acid. Current Drug Delivery, 2016, 13, 1165-1175.	0.8	6
54	Coating Lacticaseibacillus rhamnosus GG in Alginate Systems: an Emerging Strategy Towards Improved Viability in Orange Juice. AAPS PharmSciTech, 2021, 22, 123.	1.5	5

#	Article	IF	CITATIONS
55	Oral Controlled Delivery of Natural Compounds Using Food-Grade Polymer Microparticles. Current Nutraceuticals, 2020, 01, .	0.1	3
56	Introductory Chapter: Reduce the Gap from Bench to Bedside for Nanomedicines Increasing the Stability to Long-Term Storage. , 0, , .		1
57	Nanoencapsulation Strategies for Active Compounds Delivery. Nanomaterials, 2022, 12, 1319.	1.9	1