Yurii Semenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8282062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using thermal probes to regulate the batch distribution in a blast furnace with pulverized-coal injection. Steel in Translation, 2017, 47, 389-393.	0.3	19
2	Efficient Management of the Charging of Blast Furnaces and the Application of Contemporary Means of Control Over the Variable Technological Conditions. Metallurgist, 2018, 61, 950-958.	0.6	16
3	Experience of Using Manganese-Containing Materials in Blast-Furnace Charge. Metallurgist, 2020, 63, 1013-1023.	0.6	16
4	Effect of the Fuel, Raw Materials, and Process Conditions on the Behavior of Temperature Change in a Blast-Furnace Lining. Metallurgist, 2015, 59, 290-299.	0.6	13
5	Monitoring Blast Furnace Lining Condition During Five Years of Operation. Metallurgist, 2017, 61, 291-297.	0.6	13
6	Temperature distribution of the gas flux in blast furnaces. Steel in Translation, 2017, 47, 473-477.	0.3	13
7	Introduction of pulverized-coal injection at Yenakiieve Iron and Steel Works. Steel in Translation, 2017, 47, 313-319.	0.3	12
8	Expert Module of the Thermal Probes System for Blast Furnace Charging Control. Steel in Translation, 2018, 48, 802-806.	0.3	12
9	Kaolin Raw Material Briquetting for Lump Chamotte Production. Refractories and Industrial Ceramics, 2018, 59, 333-337.	0.6	12
10	Selecting the Batch Composition in Briquetting. Steel in Translation, 2018, 48, 509-512.	0.3	12
11	Complex Mathematical Model of the Distribution of Multicomponent Charge in a Blast Furnace. Metallurgist, 2018, 62, 95-100.	0.6	12
12	Model system for selecting and correcting charging programs for blast furnaces equipped with a bell-less charging apparatus. Metallurgist, 2013, 56, 652-657.	0.6	11
13	Measures for Preventing Disruption in the Blast Furnace Operation under Use of Pulverized Coal. Steel in Translation, 2020, 50, 100-106.	0.3	11
14	Blast Furnace Shaft Thermal State Monitoring System. Steel in Translation, 2017, 47, 728-731.	0.3	8
15	Decision Support System for Controlling Thermal State of Blast Furnace Smelting. Steel in Translation, 2021, 51, 261-266.	0.3	5
16	Experimental Verification of New Compaction Equations for Fine Materials of the Mining and Metallurgical Complex. Part 1. Basic Compaction Equation. Refractories and Industrial Ceramics, 2021, 62, 15-24.	0.6	5
17	Method for Predicting the Strength of Pellets Produced from Dry Fine-Grained Materials. Powder Metallurgy and Metal Ceramics, 2021, 60, 247-256.	0.8	5
18	Elaboration and realization of new approaches to diagnostic and control of blast furnace heat. Ferrous Metallurgy Bulletin of Scientific Technical and Economic Information, 2020, 76, 123-131.	0.2	5

Yurii Semenov

#	Article	IF	CITATIONS
19	Predicting the thermal state of the blast-furnace hearth. Steel in Translation, 2009, 39, 402-405.	0.3	4
20	Trends in the Engineering of Blast Furnaces in Modern Fuel and Raw Materials Conditions. Steel in Translation, 2019, 49, 110-117.	0.3	3
21	Blast Furnace Operation Improvement by Forming Uniform Circular Distribution of Raceway's Thermal Mode. , 2021, , .		3
22	Method to predict strength characteristics of briquettes obtained from dry fine-grained materials. Chernye Metally, 2021, , 59-64.	0.3	3
23	Еfficiency increase of powdered coal application at hot metal production and limestone calcination under unstable technology conditions. Ferrous Metallurgy Bulletin of Scientific Technical and Economic Information, 2020, 76, 676-690.	0.2	3
24	New scientific and applied results of studies efficiency use of pulverized coal in the production of cast iron and lime burning. Metal and Casting of Ukraine, 2020, 28, 15-26.	0.3	3
25	Development and Implementation of Decision Support Systems for Blast Smelting Control in the Conditions of PrJSC "Kamet-Steel― Metals, 2022, 12, 985.	2.3	3
26	Influence of Transient Blast Furnace Conditions on the Temperature in the Cooling System. Steel in Translation, 2019, 49, 397-401.	0.3	2
27	Experimental Verification of New Compaction Equations for Fine Materials of the Mining and Metallurgical Complex. Part 2. Basic Compaction Equation. Refractories and Industrial Ceramics, 2021, 62, 25-31.	0.6	2
28	Development of technology of pulverized coal injection in Ukraine's blast furnaces in variable liquid and gas dynamic conditions. Fundamentalʹnye I Prikladnye Problemy Äernoj Metallurgii, 2018, , 28-41.	0.1	2
29	New Method for Predicting the Compactability of Charges Made from Fine Materials of the Mining and Smelting Industry. Metallurgist, 2022, 65, 941.	0.6	2
30	Experimental verification of new compaction equations for fine materials of the mining & metallurgical complex. Rart 1. Basic compaction equation. Novye Ogneupory (new Refractories), 2021, , 20-29.	0.1	1
31	Experimental verification of new compaction equations for fine materials of the mining & metallurgical complex. Part 2. Stage compaction equatin. Novye Ogneupory (new Refractories), 2021, 1, 7-13.	0.1	1
32	NEW METHOD FOR PREDICTING COMPACTION OF CHARGES FROM FINE-FRACTION MATERIALS OF MINING AND METALLURGICAL COMPLEX. Metallurgist, 2021, , 15-22.	0.2	1
33	Study of the movement of charge materials in the shaft of a blast furnace. Metallurgist, 2010, 54, 540-547.	0.6	0
34	Gas-dynamic assessment of blast furnaces on the basis of radiolocation data. Steel in Translation, 2012, 42, 224-229.	0.3	0
35	Assessing the Feasibility of Using Electrical Potentials Recorded Between the Tuyeres and Shell of a Blast Furnace to Analyze Processes in the Furnace Hearth. Metallurgist, 2014, 57, 968-975.	0.6	0
36	Development and implementation of the new approaches to diagnostics and management of the blast furnace smelting. Fundamentalʹnye I Prikladnye Problemy Äernoj Metallurgii, 2019, , 61-77.	0.1	0

#	Article	IF	CITATIONS
37	Ways to improve the efficiency of sinter-blast furnace production in the raw materials and energy conditions of the metallurgical enterprises of Ukraine. Metal and Casting of Ukraine, 2021, 29, 8-15.	0.3	0
38	INTRODUCTION OF DECISION SUPPORT SYSTEMS FOR BLAST SMELTING CONTROL IN THE CONDITIONS OF METALLURGICAL PRODUCTION OF PRJSC "DNIPROVSKYI COKE PLANT". Fundamentalʹnye I Prikladnye Problemy Äernoj Metallurgii, 2021, , 78-94.	0.1	0
39	SCHEMATIC DIAGRAM OF THE MODEL OF END-TO-END TECHNOLOGY FOR THE PRODUCTION OF COMPETITIVE METAL PRODUCTS BY UKRAINIAN ENTERPRISES OPERATING IN UNSTABLE RAW MATERIALS AND ENERGY CONDITIONS. FundamentalÊ ¹ nye I Prikladnye Problemy Äernoj Metallurgii, 2021, , 95-107.	0.1	0