Laura Schelhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281886/publications.pdf

Version: 2024-02-01

82 3,090 31
papers citations h-index

31 54
h-index g-index

83 83 all docs citations

83 times ranked 4991 citing authors

#	Article	IF	CITATIONS
1	UVâ€induced degradation of highâ€efficiency silicon PV modules with different cell architectures. Progress in Photovoltaics: Research and Applications, 2023, 31, 36-51.	8.1	20
2	A Comparison of Emerging Nonfluoropolymer-Based Coextruded PV Backsheets to Industry-Benchmark Technologies. IEEE Journal of Photovoltaics, 2022, 12, 88-96.	2.5	7
3	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	12.6	216
4	Reversible Methanolation of Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 667-672.	13.7	23
5	Perovskite solar cells can take the heat. Science, 2022, 376, 28-29.	12.6	9
6	Electrochemical degradation modes in bifacial silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2022, 30, 948-958.	8.1	11
7	Mixing Matters: Nanoscale Heterogeneity and Stability in Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 471-480.	17.4	23
8	Dependence of adhesion on degradation mechanisms of ethylene co-vinyl acetate encapsulants over the lifetime of photovoltaic modules. Solar Energy Materials and Solar Cells, 2022, 244, 111818.	6.2	14
9	Accurately Quantifying Stress during Metal Halide Perovskite Thin Film Formation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27791-27798.	8.0	3
10	Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2022, 30, 1423-1432.	8.1	8
11	Towards validation of combined-accelerated stress testing through failure analysis of polyamide-based photovoltaic backsheets. Scientific Reports, 2021, 11, 2019.	3.3	15
12	Study of the crystal structure of SnS thin films by atomic layer deposition. AIP Advances, 2021, 11 , .	1.3	14
13	Corrosion of novel reactive silver ink and commercial silver-based metallizations in diluted acetic acid. Solar Energy Materials and Solar Cells, 2021, 223, 110900.	6.2	9
14	Understanding interfacial chemistry of positive bias high-voltage degradation in photovoltaic modules. Solar Energy Materials and Solar Cells, 2021, 223, 110959.	6.2	13
15	Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Letters, 2021, 6, 2038-2047.	17.4	43
16	BACKFLIP: Identification of Materials and Changes Upon Aging of Emerging Fluoropolymer-Free and Industry-Benchmark PV Backsheets. , 2021, , .		3
17	Glass/glass photovoltaic module reliability and degradation: a review. Journal Physics D: Applied Physics, 2021, 54, 413002.	2.8	34
18	Failure Analysis of a New Polyamide-Based Fluoropolymer-Free Backsheet After Combined-Accelerated Stress Testing. IEEE Journal of Photovoltaics, 2021, 11, 1197-1205.	2.5	7

#	Article	IF	CITATIONS
19	Kinetic origins of the metastable zone width in the manganese oxide Pourbaix diagram. Journal of Materials Chemistry A, 2021, 9, 7857-7867.	10.3	7
20	Role of Cation Ordering on Device Performance in (Ag,Cu)InSe ₂ Solar Cells with KF Post-Deposition Treatment. ACS Applied Energy Materials, 2021, 4, 233-241.	5.1	2
21	Getting their days in the sun. Nature Energy, 2021, 6, 15-16.	39.5	2
22	Compositional heterogeneity in Cs _{<i>y</i>} Pb(Br _{<i>x</i>} Isan' <i>x</i> 18a' <i>x</i>) _{3< perovskite films and its impact on phase behavior. Energy and Environmental Science, 2021, 14, 6394-6405.}	/sub> 30.8	20
23	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2021, , eabj2637.	12.6	2
24	Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials. Matter, 2020, 2, 207-219.	10.0	128
25	Size-Dependent Lattice Structure and Confinement Properties in CsPbl ₃ Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Letters, 2020, 5, 238-247.	17.4	201
26	Atomic layer deposition of cubic tin–calcium sulfide alloy films. Journal of Materials Research, 2020, 35, 795-803.	2.6	6
27	Structural Evolution During Perovskite Crystal Formation and Degradation: In Situ and Operando Xâ€Ray Diffraction Studies. Advanced Energy Materials, 2020, 10, 1903074.	19.5	33
28	Reversible multicolor chromism in layered formamidinium metal halide perovskites. Nature Communications, 2020, 11, 5234.	12.8	48
29	Effects of Oxygen and Water on the Formation and Degradation Processes of (CH ₃ NH ₃)Pbl ₃ Thin Films. ACS Applied Energy Materials, 2020, 3, 11269-11274.	5.1	4
30	The Role of Dimethylammonium in Bandgap Modulation for Stable Halide Perovskites. ACS Energy Letters, 2020, 5, 1856-1864.	17.4	65
31	Combined Spatially Resolved Characterization of Antireflection and Antisoiling Coatings for PV Module Glass. ACS Combinatorial Science, 2020, 22, 197-203.	3.8	4
32	Using resonant energy X-ray diffraction to extract chemical order parameters in ternary semiconductors. Journal of Materials Chemistry C, 2020, 8, 4350-4356.	5.5	13
33	Comment on "Light-induced lattice expansion leads to high-efficiency perovskite solar cells― Science, 2020, 368, .	12.6	38
34	Surface-Activated Corrosion in Tin–Lead Halide Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3344-3351.	17.4	55
35	Crystallization of TiO2 polymorphs from RF-sputtered, amorphous thin-film precursors. AIP Advances, 2020, 10, 025109.	1.3	10
36	UV-Induced Degradation of High-Efficiency Solar Cells with Different Architectures. , 2020, , .		11

#	Article	IF	Citations
37	Solar Data Tools: Automatic Solar Data Processing Pipeline. , 2020, , .		5
38	UV-Fluorescence Imaging of Silicon PV Modules After Outdoor Aging and Accelerated Stress Testing. , 2020, , .		5
39	Advanced X-ray Scattering and Spectroscopy Characterization of an Antisoiling Coating for Solar Module Glass. ACS Applied Energy Materials, 2019, 2, 7870-7878.	5.1	5
40	A map of the inorganic ternary metal nitrides. Nature Materials, 2019, 18, 732-739.	27.5	274
41	Tearing and reliability of photovoltaic module backsheets. Progress in Photovoltaics: Research and Applications, 2019, 27, 693-705.	8.1	21
42	Multifunctional Optical Coatings and Light Management for Photovoltaics., 2019, , 153-173.		3
43	Zn ₂ SbN ₃ : growth and characterization of a metastable photoactive semiconductor. Materials Horizons, 2019, 6, 1669-1674.	12.2	32
44	Insights into operational stability and processing of halide perovskite active layers. Energy and Environmental Science, 2019, 12, 1341-1348.	30.8	125
45	Correlation of advanced accelerated stress testing with polyamide-based photovoltaic backsheet field-failures., 2019,,.		5
46	Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. Journal of Non-Crystalline Solids, 2019, 505, 109-114.	3.1	13
47	Mechanisms of adhesion degradation at the photovoltiac module's cell metallizationâ€encapsulant interface. Progress in Photovoltaics: Research and Applications, 2019, 27, 340-345.	8.1	16
48	Negative-pressure polymorphs made by heterostructural alloying. Science Advances, 2018, 4, eaaq1442.	10.3	34
49	Understanding Crystallization Pathways of MnOx Polymorph Formation via in-situ X-ray Scattering. Microscopy and Microanalysis, 2018, 24, 1486-1487.	0.4	1
50	Low-Vapor-Pressure Solvent Additives Function as Polymer Swelling Agents in Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16574-16588.	3.1	17
51	Exciton photoluminescence and benign defect complex formation in zinc tin nitride. Materials Horizons, 2018, 5, 823-830.	12.2	41
52	A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Applied Physics Reviews, 2018, 5, 021303.	11.3	223
53	Understanding crystallization pathways leading to manganese oxide polymorph formation. Nature Communications, 2018, 9, 2553.	12.8	98
54	Theoryâ€Guided Synthesis of a Metastable Leadâ€Free Piezoelectric Polymorph. Advanced Materials, 2018, 30, 1800559.	21.0	6

#	Article	IF	Citations
55	Special Section Guest Editorial: Perovskite-Based Solar Cells. Journal of Photonics for Energy, 2018, 8, 1.	1.3	0
56	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. Chemistry of Materials, 2017, 29, 1964-1988.	6.7	116
57	Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Science Advances, 2017, 3, e1700270.	10.3	46
58	Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn _{1â°'x} Ca _x Se. Journal of Materials Chemistry A, 2017, 5, 16873-16882.	10.3	19
59	Point defects in Cu 2 ZnSnSe 4 (CZTSe): Resonant Xâ€ray diffraction study of the lowâ€temperature order/disorder transition. Physica Status Solidi (B): Basic Research, 2017, 254, 1700156.	1.5	14
60	High-fraction brookite films from amorphous precursors. Scientific Reports, 2017, 7, 15232.	3.3	56
61	Operando X-Ray Diffraction for Characterization of Photovoltaic Materials. , 2017, , .		0
62	Monte Carlo simulations of disorder in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ZnSn</mml:mi><mml:msub><mml mathvariant="normal">N<mml:mn>2</mml:mn></mml></mml:msub></mml:mrow></mml:math> and the electronic structure. Physical Review Materials, 2017, 1, .	l:mi 2.4	79
63	Pâ€Type Transparent Cuâ€Alloyed ZnS Deposited at Room Temperature. Advanced Electronic Materials, 2016, 2, 1500396.	5.1	40
64	Strain-mediated multiferroic control of spontaneous exchange bias in Ni-NiO heterostructures. Journal of Applied Physics, 2016, 120, .	2.5	10
65	Tuning magnetoelectric coupling using porosity in multiferroic nanocomposites of ALD-grown Pb(Zr,Ti)O3 and templated mesoporous CoFe2O4. Applied Physics Letters, 2016, 109, .	3.3	17
66	Undoped and Ni-Doped CoO _{<i>x</i>} Surface Modification of Porous BiVO ₄ Photoelectrodes for Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 23449-23457.	3.1	52
67	Formation of Nanoscale Composites of Compound Semiconductors Driven by Charge Transfer. Nano Letters, 2016, 16, 5247-5254.	9.1	9
68	Monitoring a Silent Phase Transition in CH ₃ NH ₃ Pbl ₃ Solar Cells via <i>Operando</i> X-ray Diffraction. ACS Energy Letters, 2016, 1, 1007-1012.	17.4	52
69	The effect of sub-oxide phases on the transparency of tin-doped gallium oxide. Applied Physics Letters, 2016, 109, .	3.3	9
70	Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS) _{<i>x</i>} :(ZnS) _{1–<i>x</i>} Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. Nano Letters, 2016, 16, 1925-1932.	9.1	89
71	Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy. Applied Physics Letters, 2015, 107, .	3.3	53
72	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25247-25258.	8.0	40

#	Article	lF	CITATIONS
73	Magnetic confinement and coupling in narrow-diameter Au–Ni nanowires. Journal of Magnetism and Magnetic Materials, 2015, 379, 239-243.	2.3	9
74	Directed Selfâ€Assembly as a Route to Ferromagnetic and Superparamagnetic Nanoparticle Arrays. Advanced Functional Materials, 2014, 24, 6956-6962.	14.9	11
75	Nanostructured Pseudocapacitors Based on Atomic Layer Deposition of V ₂ O ₅ onto Conductive Nanocrystalâ€based Mesoporous ITO Scaffolds. Advanced Functional Materials, 2014, 24, 6717-6728.	14.9	76
76	Comparing Matched Polymer:Fullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance. Journal of Physical Chemistry C, 2014, 118, 17413-17425.	3.1	50
77	Nanoporous Semiconductors Synthesized Through Polymer Templating of Ligandâ€Stripped CdSe Nanocrystals. Advanced Materials, 2013, 25, 1315-1322.	21.0	28
78	Magnetoelectric Control of Superparamagnetism. Nano Letters, 2013, 13, 884-888.	9.1	66
79	General Method for the Synthesis of Hierarchical Nanocrystal-Based Mesoporous Materials. ACS Nano, 2012, 6, 6386-6399.	14.6	85
80	Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 177-181.	3.3	18
81	A Dimethylammonium-Induced Intermediate Phase Approach Towards Stable Formamidinium-Caesium-based Perovskite Solar Cells. , 0, , .		0
82	Venturing outdoors. Nature Energy, 0, , .	39.5	0