
Gabor Jakab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recovery of Vitis vinifera L. cv. â€~Kékfrankos' from â€~bois noir' disease. European Journal of Plant Pathology, 2020, 156, 987-991.	1.7	0
2	Age- and season-dependent pattern of flavonol glycosides in Cabernet Sauvignon grapevine leaves. Scientific Reports, 2020, 10, 14241.	3.3	20
3	Single-dose β-aminobutyric acid treatment modifies tobacco (Nicotiana tabacum L.) leaf acclimation to consecutive UV-B treatment. Photochemical and Photobiological Sciences, 2019, 18, 359-366.	2.9	3
4	Nanostructured TiO2-induced photocatalytic stress enhances the antioxidant capacity and phenolic content in the leaves of Vitis vinifera on a genotype-dependent manner. Journal of Photochemistry and Photobiology B: Biology, 2019, 190, 137-145.	3.8	19
5	Contrasting acclimation mechanisms of berry color variant grapevine cultivars (Vitis vinifera L. cv.) Tj ETQq1 1 0.	.78 <u>43</u> 14 r 2.1	gBT ₄ /Overloc
6	Environmental plasticity of Pinot noir grapevine leaves: A transâ€European study of morphological and biochemical changes along a 1,500â€km latitudinal climatic gradient. Plant, Cell and Environment, 2017, 40, 2790-2805.	5.7	34
7	Environmental Factors Correlated with the Metabolite Profile of <i>Vitis vinifera</i> cv. Pinot Noir Berry Skins along a European Latitudinal Gradient. Journal of Agricultural and Food Chemistry, 2016, 64, 8722-8734.	5.2	52
8	Main Leaf Polyphenolic Components of Berry Color Variant Grapevines and Their Acclimative Responses to Sunlight Exposure. Applied Sciences (Switzerland), 2015, 5, 1955-1969.	2.5	8
9	Protein and alkaloid patterns of the floral nectar in some solanaceous species. Acta Biologica Hungarica, 2015, 66, 304-315.	0.7	7
10	The taxon-specific paralogs of grapevine PRLIP genes are highly induced upon powdery mildew infection. Journal of Plant Physiology, 2012, 169, 1767-1775.	3.5	7
11	Interplay between JA, SA and ABA signalling during basal and induced resistance against <i>Pseudomonas syringae</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2008, 54, 81-92.	5.7	262
12	The xenobiotic βâ€aminobutyric acid enhances Arabidopsis thermotolerance. Plant Journal, 2008, 53, 144-156.	5.7	108
13	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
14	Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal, 2006, 49, 16-26.	5.7	404
15	Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses. Plant Physiology, 2005, 139, 267-274.	4.8	387
16	Î ² -Aminobutyric Acid-Induced Resistance Against Downy Mildew in Grapevine Acts Through the Potentiation of Callose Formation and Jasmonic Acid Signaling. Molecular Plant-Microbe Interactions, 2005, 18, 819-829.	2.6	230
17	Dissecting the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. Plant Cell, 2005, 17, 987-999.	6.6	356
18	Molecular Characterization of a Novel Lipase-Like Pathogen-Inducible Gene Family of Arabidopsis. Plant Physiology, 2003, 132, 2230-2239.	4.8	49

GABOR JAKAB

#	Article	IF	CITATIONS
19	β-Aminobutyric Acid-induced Resistance in Plants. European Journal of Plant Pathology, 2001, 107, 29-37.	1.7	258
20	Transgenic Plants Expressing Viral Sequences Create a Favourable Environment for Recombination Between Viral Sequences. , 1997, , 45-51.		10
21	Nucleotide sequence of cytoplasmic 5S rRNA from a eukaryotic thermophilic unicellular alga,Cyanidium caldarium. Nucleic Acids Research, 1993, 21, 2770-2770.	14.5	Ο
22	Nucleotide sequence of U1 RNA from a green alga,Chlamydomonas reinhardtii. Nucleic Acids Research, 1993, 21, 2255-2255.	14.5	4
23	Nucleotide sequence of U5 RNA from a green alga,Chiamydomonas reinhrdtii. Nucleic Acids Research, 1992, 20, 5224-5224.	14.5	9
24	Nucleotide sequence of chloroplast tRNALeu/UA m7G/ fromChlamydomonas reinhardtii. Nucleic Acids Research, 1990, 18, 7444-7444.	14.5	10
25	Plant small nuclear RNAs. V. U4 RNA is present in broad bean plants in the form of sequence variants and is base-paired with U6 RNA. Nucleic Acids Research, 1988, 16, 5407-5426.	14.5	27
26	Viroid pathogenicity and pre-rRNA processing: A model amenable to experimental testing. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 868, 190-197.	2.4	14