Dmitri Golberg

List of Publications by Citations

Source: https://exaly.com/author-pdf/8281626/dmitri-golberg-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52,861 748 197 121 h-index g-index citations papers 57,653 7.69 804 9.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
748	Boron nitride nanotubes and nanosheets. <i>ACS Nano</i> , 2010 , 4, 2979-93	16.7	1699
747	Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. <i>Advanced Materials</i> , 2009 , 21, 2889-2893	24	1282
746	ZnS nanostructures: From synthesis to applications. <i>Progress in Materials Science</i> , 2011 , 56, 175-287	42.2	957
745	Boron Nitride Nanotubes. <i>Advanced Materials</i> , 2007 , 19, 2413-2432	24	766
744	Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. <i>Chemical Society Reviews</i> , 2016 , 45, 3989-4012	58.5	657
743	"White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. <i>Nano Letters</i> , 2010 , 10, 5049-55	11.5	643
742	Inorganic semiconductor nanostructures and their field-emission applications. <i>Journal of Materials Chemistry</i> , 2008 , 18, 509-522		538
741	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. <i>Nature Communications</i> , 2013 , 4, 2905	17.4	514
740	Nano boron nitride flatland. <i>Chemical Society Reviews</i> , 2014 , 43, 934-59	58.5	499
739	N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2012 , 22, 2682-2690	15.6	479
738	Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors. <i>Advanced Materials</i> , 2009 , 21, 2034-2039	24	479
737	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. <i>Advanced Materials</i> , 2005 , 17, 1648-1652	24	474
736	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. <i>Scientific Reports</i> , 2013 , 3, 2975	4.9	467
735	A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. <i>Sensors</i> , 2009 , 9, 6504-29	3.8	421
734	Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. <i>Advanced Functional Materials</i> , 2013 , 23, 1824-1831	15.6	420
733	Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. <i>Advanced Functional Materials</i> , 2009 , 19, 1857-1862	15.6	394
732	Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. <i>Advanced Materials</i> , 2015 , 27, 8035-41	24	369

731	Boron nitride nanotubes. Materials Science and Engineering Reports, 2010, 70, 92-111	30.9	345
730	Octahedral boron nitride fullerenes formed by electron beam irradiation. <i>Applied Physics Letters</i> , 1998 , 73, 2441-2443	3.4	322
729	One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. <i>Chemical Society Reviews</i> , 2011 , 40, 2986-3004	58.5	321
728	Nanotubes in boron nitride laser heated at high pressure. <i>Applied Physics Letters</i> , 1996 , 69, 2045-2047	3.4	316
727	Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. <i>Advanced Materials</i> , 2010 , 22, 2547-52	24	312
726	Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. <i>Advanced Materials</i> , 2010 , 22, 3161-5	24	311
725	Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. <i>ACS Nano</i> , 2014 , 8, 6123-30	16.7	307
724	Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. <i>Chemical Physics Letters</i> , 1999 , 308, 337-342	2.5	303
723	Low-dimensional boron nitride nanomaterials. <i>Materials Today</i> , 2012 , 15, 256-265	21.8	297
722	Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. <i>Applied Materials Today</i> , 2015 , 1, 60-66	6.6	294
721	Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons. <i>Advanced Functional Materials</i> , 2003 , 13, 493-496	15.6	288
720	Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. <i>Nano Letters</i> , 2016 , 16, 2054-60	11.5	286
719	Thickness-dependent photocatalytic performance of ZnO nanoplatelets. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15146-51	3.4	286
718	Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors. <i>Advanced Functional Materials</i> , 2010 , 20, 4233-4248	15.6	277
717	One-dimensional CdS nanostructures: synthesis, properties, and applications. <i>Nanoscale</i> , 2010 , 2, 168-8	8 7 7.7	276
716	ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2009 , 34, 190-223	10.1	274
715	Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. <i>Nano Energy</i> , 2016 , 26, 313-323	17.1	273
714	Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. <i>Nano Letters</i> , 2014 , 14, 1164-71	11.5	271

713	Synthesis and characterization of ropes made of BN multiwalled nanotubes. <i>Scripta Materialia</i> , 2001 , 44, 1561-1565	5.6	268
712	Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14550-1	16.4	259
711	New Ultraviolet Photodetector Based on Individual Nb2O5 Nanobelts. <i>Advanced Functional Materials</i> , 2011 , 21, 3907-3915	15.6	257
710	Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. <i>ACS Nano</i> , 2010 , 4, 1596-602	16.7	253
709	Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. <i>Advanced Materials</i> , 2013 , 25, 4925-31	24	247
708	Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. <i>Advanced Materials</i> , 2013 , 25, 4625-30	24	243
707	ZnO nanoneedles with tip surface perturbations: Excellent field emitters. <i>Applied Physics Letters</i> , 2004 , 84, 3603-3605	3.4	243
706	Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires. <i>Advanced Materials</i> , 2003 , 15, 129	94 <u>≥</u> 1µ296	5 243
705	Effective precursor for high yield synthesis of pure BN nanotubes. <i>Solid State Communications</i> , 2005 , 135, 67-70	1.6	243
704	Boron nitride porous microbelts for hydrogen storage. <i>ACS Nano</i> , 2013 , 7, 1558-65	16.7	234
703	Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 2011, 5, 6507-15	16.7	234
702	Characteristics and field Facinity Description (SVartically Alice of 7-0 Non-acids and		
	Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416	15.6	231
701	Nanopencils Fabricated by a Modified Thermal-Evaporation Process. Advanced Functional Materials,	15.6	231
701	Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416		, and the second
,	Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416 Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. <i>Nano Letters</i> , 2013 , 13, 4702-7 Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO	11.5	230
700	Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416 Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. <i>Nano Letters</i> , 2013 , 13, 4702-7 Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. <i>Advanced Materials</i> , 2014 , 26, 3088-93 Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons,	11.5	230
700 699	Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416 Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. <i>Nano Letters</i> , 2013 , 13, 4702-7 Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. <i>Advanced Materials</i> , 2014 , 26, 3088-93 Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. <i>ACS Nano</i> , 2011 , 5, 2916-22 Perfectly dissolved boron nitride nanotubes due to polymer wrapping. <i>Journal of the American</i>	11.5 24 16.7	230 229 223

(2008-2012)

695	ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. <i>Advanced Materials</i> , 2012 , 24, 3421-5	24	211
694	Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission. <i>Advanced Functional Materials</i> , 2009 , 19, 3165-3172	15.6	211
693	An Efficient Way to Assemble ZnS Nanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability. <i>Advanced Functional Materials</i> , 2010 , 20, 500-508	15.6	206
692	Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19102-9	16.4	205
691	Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. <i>ACS Nano</i> , 2010 , 4, 2515-22	16.7	204
690	Fluorination and electrical conductivity of BN nanotubes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6552-3	16.4	202
689	Single-Crystalline In2O3 Nanotubes Filled with In. Advanced Materials, 2003, 15, 581-585	24	202
688	Field emission from MoO3 nanobelts. <i>Applied Physics Letters</i> , 2002 , 81, 5048-5050	3.4	201
687	Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. <i>Journal of Materials Science and Technology</i> , 2015 , 31, 589-598	9.1	199
686	High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors. <i>Advanced Materials</i> , 2009 , 21, 5016-5021	24	199
685	Boron nitride nanotubes: functionalization and composites. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3900		199
684	Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles. <i>Carbon</i> , 2000 , 38, 2017-2027	10.4	198
683	One-dimensional CdS nanostructures: a promising candidate for optoelectronics. <i>Advanced Materials</i> , 2013 , 25, 3017-37	24	190
682	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. <i>Nature Communications</i> , 2018 , 9, 402	17.4	186
681	"Chemical blowing" of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and C(x) -BN nanosheets. <i>Advanced Materials</i> , 2011 , 23, 4072-6	24	184
680	Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. <i>Advanced Materials</i> , 2005 , 17, 3005-3009	24	182
679	Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. <i>ACS Nano</i> , 2009 , 3, 949-59	16.7	178
678	Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. <i>ACS Nano</i> , 2008 , 2, 1015-21	16.7	173

677	Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. <i>Nano Letters</i> , 2008 , 8, 2794-9	11.5	173
676	Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. <i>Nanoscale</i> , 2011 , 3, 1120-6	7.7	172
675	Pure and doped boron nitride nanotubes. <i>Materials Today</i> , 2007 , 10, 30-38	21.8	171
674	Immobilization of proteins on boron nitride nanotubes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17144-5	16.4	171
673	Recent progress of one-dimensional ZnO nanostructured solar cells. <i>Nano Energy</i> , 2012 , 1, 91-106	17.1	167
672	Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. <i>Nano Letters</i> , 2007 , 7, 2146-2151	11.5	167
671	Self-Assembled Highly Faceted Wurtzite-Type ZnS Single-Crystalline Nanotubes with Hexagonal Cross-Sections. <i>Advanced Materials</i> , 2005 , 17, 1972-1977	24	166
670	Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11631-11663	13	166
669	MoS2 nanoflowers and their field-emission properties. <i>Applied Physics Letters</i> , 2003 , 82, 1962-1964	3.4	165
668	Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. <i>Advanced Functional Materials</i> , 2008 , 18, 3653-3661	15.6	164
667	Deformation-driven electrical transport of individual boron nitride nanotubes. <i>Nano Letters</i> , 2007 , 7, 632-7	11.5	162
666	Phonon characteristics and cathodolumininescence of boron nitride nanotubes. <i>Applied Physics Letters</i> , 2005 , 86, 213110	3.4	162
665	N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. <i>ACS Applied Materials & ACS Applied & A</i>	9.5	161
664	Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4340-4344	3.8	161
663	Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. <i>Chemistry - A European Journal</i> , 2010 , 16, 6488-94	4.8	158
662	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. <i>Chemical Society Reviews</i> , 2016 , 45, 4042-73	58.5	157
661	Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. <i>Nano Energy</i> , 2017 , 31, 152-159	17.1	152
660	In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 2011 , 5, 3800-10	16.7	151

(2006-2005)

659	Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. <i>Nano Letters</i> , 2005 , 5, 467-72	11.5	150	
658	Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6530-1	16.4	150	
657	Ultrathin nanoporous Fe3O4Barbon nanosheets with enhanced supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1952	13	149	
656	Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. <i>Nano Energy</i> , 2013 , 2, 754-763	17.1	148	
655	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. <i>Chemistry of Materials</i> , 2005 , 17, 5887-5890	9.6	147	
654	A Fully Transparent and Flexible Ultraviolet Visible Photodetector Based on Controlled Electrospun ZnO-CdO Heterojunction Nanofiber Arrays. <i>Advanced Functional Materials</i> , 2015 , 25, 5885	-5 8 54	146	
653	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. <i>ACS Applied Materials & Applied Mate</i>	9.5	145	
652	Electrical transport and high-performance photoconductivity in individual ZrS(2) nanobelts. <i>Advanced Materials</i> , 2010 , 22, 4151-6	24	145	
651	Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7932-5	16.4	145	
650	Solvothermal Synthesis, Cathodoluminescence, and Field-Emission Properties of Pure and N-Doped ZnO Nanobullets. <i>Advanced Functional Materials</i> , 2009 , 19, 131-140	15.6	143	
649	Cobalt(II,III) oxide hollow structures: fabrication, properties and applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23310		142	
648	Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. Journal of Materials Chemistry, 2011 , 21, 40-56		142	
647	Chemically activated boron nitride nanotubes. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 1536-40	4.5	142	
646	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. <i>Small</i> , 2020 , 16, e2002806	11	142	
645	Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. <i>Chemical Communications</i> , 2012 , 48, 4812-4	5.8	141	
644	B rotrusionsIbr BolesIn graphene: which is the better choice for sodium ion storage?. <i>Energy and Environmental Science</i> , 2017 , 10, 979-986	35.4	140	
643	Performance-improved LiD2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. <i>Energy and Environmental Science</i> , 2014 , 7, 1648-1652	35.4	140	
642	Synthesis, characterization and field-emission properties of bamboo-like beta-SiC nanowires. <i>Nanotechnology</i> , 2006 , 17, 3468-72	3.4	139	

641	Characteristics of boron nitride nanotube-polyaniline composites. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7929-32	16.4	136
640	High P erformance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4 Nanowire. <i>Advanced Functional Materials</i> , 2016 , 26, 704-712	15.6	136
639	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. <i>Polymer Chemistry</i> , 2012 , 3, 962	4.9	130
638	Oriented Assemblies of ZnS One-Dimensional Nanostructures. <i>Advanced Materials</i> , 2004 , 16, 831-834	24	129
637	Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. <i>Nano Energy</i> , 2020 , 67, 104270	17.1	129
636	Tensile tests on individual multi-walled boron nitride nanotubes. <i>Advanced Materials</i> , 2010 , 22, 4895-9	24	128
635	Li-O(2) battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 4659-64	24	127
634	In situ electrochemical formation of core\(\text{Shell} \) heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. Journal of Materials Chemistry A, 2017, 5, 4335-4342	13	126
633	Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. <i>Nano Letters</i> , 2012 , 12, 1898-904	11.5	126
632	Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8144-5	16.4	126
631	Boron nitride nanotubes/polystyrene composites. <i>Journal of Materials Research</i> , 2006 , 21, 2794-2800	2.5	126
630	Growth and Field Emission of Hierarchical Single-Crystalline Wurtzite AlN Nanoarchitectures. <i>Advanced Materials</i> , 2005 , 17, 110-114	24	124
629	Superior Performance of a LiD2 Battery with Metallic RuO2 Hollow Spheres as the Carbon-Free Cathode. <i>Advanced Energy Materials</i> , 2015 , 5, 1500294	21.8	122
628	Recent advances in solution-processed inorganic nanofilm photodetectors. <i>Chemical Society Reviews</i> , 2014 , 43, 1400-22	58.5	121
627	Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. <i>Nanoscale Research Letters</i> , 2012 , 7, 662	5	120
626	One-dimensional surface phonon polaritons in boron nitride nanotubes. <i>Nature Communications</i> , 2014 , 5, 4782	17.4	119
625	CoO octahedral nanocages for high-performance lithium ion batteries. <i>Chemical Communications</i> , 2012 , 48, 4878-80	5.8	119
624	Nanomechanical cleavage of molybdenum disulphide atomic layers. <i>Nature Communications</i> , 2014 , 5, 3631	17.4	118

(2011-2010)

623	Single-crystalline SbBelhanowires for high-performance field emitters and photodetectors. <i>Advanced Materials</i> , 2010 , 22, 4530-3	24	118
622	Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. <i>Journal of Colloid and Interface Science</i> , 2011 , 359, 261-8	9.3	116
621	Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11306-13	16.4	116
620	Insights into the structure of BN nanotubes. <i>Applied Physics Letters</i> , 2000 , 77, 1979-1981	3.4	115
619	Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites. <i>ACS Nano</i> , 2014 , 8, 9081-8	16.7	114
618	Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12280-2	5.8	113
617	Needlelike bicrystalline GaN nanowires with excellent field emission properties. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17082-5	3.4	113
616	Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12673-12676	3.8	112
615	Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. <i>Nanotechnology</i> , 2009 , 20, 385707	3.4	111
614	Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications. <i>ACS Nano</i> , 2014 , 8, 2755-65	16.7	110
613	Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano, 2011, 5, 6571-7	16.7	110
612	Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 63-6	16.4	110
611	MoO3-promoted synthesis of multi-walled BN nanotubes from C nanotube templates. <i>Chemical Physics Letters</i> , 2000 , 323, 185-191	2.5	110
610	Tuning of the Optical, Electronic, and Magnetic Properties of Boron Nitride Nanosheets with Oxygen Doping and Functionalization. <i>Advanced Materials</i> , 2017 , 29, 1700695	24	109
609	Characterization, Cathodoluminescence, and Field-Emission Properties of Morphology-Tunable CdS Micro/Nanostructures. <i>Advanced Functional Materials</i> , 2009 , 19, 2423-2430	15.6	106
608	WO3 nanorods/nanobelts synthesized via physical vapor deposition process. <i>Chemical Physics Letters</i> , 2003 , 367, 214-218	2.5	106
607	Nanocable-aligned ZnS tetrapod nanocrystals. Journal of the American Chemical Society, 2003, 125, 161	9 6 674	106
606	Size-tailored ZnO submicrometer spheres: bottom-up construction, size-related optical extinction, and selective aniline trapping. <i>Advanced Materials</i> , 2011 , 23, 1865-70	24	105

605	Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. <i>Chemical Physics Letters</i> , 2003 , 372, 758-762	2.5	104
604	Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. <i>Carbon</i> , 2004 , 42, 2625-2633	10.4	103
603	Filling boron nitride nanotubes with metals. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 479-485	2.6	103
602	Single-Crystalline AlN Nanotubes with Carbon-Layer Coatings on the Outer and Inner Surfaces via a Multiwalled-Carbon-Nanotube-Template-Induced Route. <i>Advanced Materials</i> , 2005 , 17, 213-217	24	102
601	Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes. <i>Advanced Materials</i> , 2005 , 17, 545-549	24	102
600	Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13605-13609	3.8	100
599	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4591-5	11.5	100
598	Growth of Single-Crystal Indium Nitride Nanotubes and Nanowires by a Controlled-Carbonitridation Reaction Route. <i>Advanced Materials</i> , 2004 , 16, 1833-1838	24	100
597	Plasma-assisted interface engineering of boron nitride nanostructure films. ACS Nano, 2014, 8, 10631-9	16.7	99
596	Layered Rare-Earth Hydroxides (LRHs) of (Y1\(\text{Leux}\))2(OH)5NO3\(\text{InH2O}\) (x = 0\(\text{II}\)): Structural Variations by Eu3+ Doping, Phase Conversion to Oxides, and the Correlation of Photoluminescence Behaviors. Chemistry of Materials, 2010 , 22, 4204-4213	9.6	99
595	Nanophotonic switch: gold-in-Ga2O3 peapod nanowires. <i>Nano Letters</i> , 2008 , 8, 3081-5	11.5	98
594	Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions. <i>ACS Nano</i> , 2018 , 12, 4148-4155	16.7	97
593	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3600-5	16.4	97
592	WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6525		97
591	Stone Wales Defects in Single-Walled Boron Nitride Nanotubes: Formation Energies, Electronic Structures, and Reactivity. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1365-1370	3.8	97
590	Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1469-1478	13	95
589	One-Step Template-Free Synthesis of Highly Porous Boron Nitride Microsponges for Hydrogen Storage. <i>Advanced Energy Materials</i> , 2014 , 4, 1301525	21.8	95
588	Tube-in-tube TiOIhanotubes with porous walls: fabrication, formation mechanism, and photocatalytic properties. <i>Small</i> , 2011 , 7, 445-9	11	95

587	Ropes of BN multi-walled nanotubes. Solid State Communications, 2000, 116, 1-6	1.6	95
586	Bulk synthesis of single-crystalline magnesium oxide nanotubes. <i>Inorganic Chemistry</i> , 2004 , 43, 2462-4	5.1	94
585	Boron-oxygen luminescence centres in boron-nitrogen systems. Chemical Communications, 2007, 4599-	6 9 .8	93
584	Cerium phosphate nanotubes: synthesis, valence state, and optical properties. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 576-9	16.4	93
583	Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage. <i>Scientific Reports</i> , 2013 , 3, 2543	4.9	92
582	Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. <i>Nanotechnology</i> , 2007 , 18, 485706	3.4	90
581	Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13076	13	89
580	Syntheses and properties of B-C-N and BN nanostructures. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2161-86	3	89
579	Ga-filled single-crystalline MgO nanotube: Wide-temperature range nanothermometer. <i>Applied Physics Letters</i> , 2003 , 83, 999-1001	3.4	89
578	Unusual formation of ⊞e2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium-ions batteries. <i>Nano Energy</i> , 2013 , 2, 257-267	17.1	88
577	Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. <i>ACS Nano</i> , 2011 , 5, 4401-6	16.7	88
576	Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. <i>Nature Communications</i> , 2017 , 8, 13936	17.4	86
575	Improved Li Storage through Homogeneous N-Doping within Highly Branched Tubular Graphitic Foam. <i>Advanced Materials</i> , 2017 , 29, 1603692	24	86
574	Temperature-dependent electrical property transition of graphene oxide paper. <i>Nanotechnology</i> , 2012 , 23, 455705	3.4	86
573	Periodic TiO2 Nanorod Arrays with Hexagonal Nonclose-Packed Arrangements: Excellent Field Emitters by Parameter Optimization. <i>Advanced Functional Materials</i> , 2009 , 19, 2467-2473	15.6	86
572	Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer. <i>Nano Energy</i> , 2015 , 16, 19-27	17.1	85
571	Flexible SnO(2) hollow nanosphere film based high-performance ultraviolet photodetector. <i>Chemical Communications</i> , 2013 , 49, 3739-41	5.8	85
570	Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips: Potential Luminescent and Field-Emitter Nanomaterial. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4735-4742	3.8	85

569	Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. <i>Physical Review B</i> , 2006 , 74,	3.3	84
568	Self-Assembly of SiO2 Nanowires and Si Microwires into Hierarchical Heterostructures on a Large Scale. <i>Advanced Materials</i> , 2005 , 17, 971-975	24	84
567	Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. <i>Nanotechnology</i> , 2011 , 22, 265704	3.4	83
566	Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. <i>Nanotechnology</i> , 2011 , 22, 145602	3.4	83
565	Copper-Filled Carbon Nanotubes: Rheostatlike Behavior and Femtogram Copper Mass Transport. <i>Advanced Materials</i> , 2007 , 19, 1937-1942	24	83
564	Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3493-7	16.4	83
563	Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 76, 499-507	2.6	82
562	In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17984		81
561	Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. <i>Applied Physics Letters</i> , 2010 , 97, 161102	3.4	81
560	Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 627-32	9.5	81
559	Isolation of individual boron nitride nanotubes via peptide wrapping. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4976-7	16.4	80
558	Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. <i>Nano Energy</i> , 2016 , 24, 111-120	17.1	80
557	Experimental and theoretical studies suggesting the possibility of metallic boron nitride edges in porous nanourchins. <i>Nano Letters</i> , 2008 , 8, 1026-32	11.5	79
556	Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction. <i>Journal of Applied Physics</i> , 1999 , 86, 2364-2366	2.5	79
555	Hybridization of Au nanoparticle-loaded TiO2 with BN nanosheets for efficient solar-driven photocatalysis. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4150	13	78
554	Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4818		78
553	Sn-filled single-crystalline wurtzite-type ZnS nanotubes. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4606-9	16.4	77
552	Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. <i>ACS Nano</i> , 2017 , 11, 558-568	16.7	76

(2013-2005)

551	Porous BCN nanotubular fibers: growth and spatially resolved cathodoluminescence. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16354-5	16.4	76	
550	Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. <i>Small</i> , 2005 , 1, 95-9	11	76	
549	An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation. <i>Dalton Transactions</i> , 2013 , 42, 2687-90	4.3	75	
548	Unique morphologies of boron nitride nanotubes. <i>Applied Physics Letters</i> , 2001 , 79, 415-417	3.4	75	
547	The Role of Geometric Sites in 2D Materials for Energy Storage. <i>Joule</i> , 2018 , 2, 1075-1094	27.8	75	
546	Synthesis and thermoelectric behaviour of copper telluride nanosheets. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 985-990	13	74	
545	Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. <i>Chemical Communications</i> , 2013 , 49, 7337-9	5.8	74	
544	Near-band-edge recombinations in multiwalled boron nitride nanotubes: Cathodoluminescence and photoluminescence spectroscopy measurements. <i>Physical Review B</i> , 2008 , 77,	3.3	74	
543	Single-crystal nanotubes of II3-V2 semiconductors. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7568-72	16.4	74	
542	A comprehensive analysis of the CVD growth of boron nitride nanotubes. <i>Nanotechnology</i> , 2012 , 23, 215601	3.4	72	
541	Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13592-3	16.4	72	
540	Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. <i>Chemical Communications</i> , 2007 , 3048-50	5.8	72	
539	SicBiO2© Coaxial Nanocables and Chains of Carbon NanotubeBiC Heterojunctions. <i>Advanced Materials</i> , 2004 , 16, 93-96	24	72	
538	Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. <i>Chemical Physics Letters</i> , 2004 , 396, 167-173	2.5	72	
537	Insulating 'nanocables': Invar Fe\(\mathbb{B}\)i alloy nanorods inside BN nanotubes. <i>Chemical Physics Letters</i> , 2001 , 347, 349-354	2.5	72	
536	Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 405, 126580	14.7	72	
535	High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. <i>Nano Energy</i> , 2015 , 16, 81-90	17.1	71	
534	Bandgap-graded CdS(x)Se(1-x) nanowires for high-performance field-effect transistors and solar cells. <i>Advanced Materials</i> , 2013 , 25, 1109-13, 1082	24	71	

533	Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. <i>Nanotechnology</i> , 2015 , 26, 015705	3.4	71
532	Boron nitride nanotube growth defects and their annealing-out under electron irradiation. <i>Chemical Physics Letters</i> , 1997 , 279, 191-196	2.5	71
531	Structure and Field-Emission Properties of Sub-Micrometer-Sized Tungsten-Whisker Arrays Fabricated by Vapor Deposition. <i>Advanced Materials</i> , 2009 , 21, 2387-2392	24	70
530	Self-Assembled Hierarchical Single-Crystalline EsiC Nanoarchitectures. <i>Crystal Growth and Design</i> , 2007 , 7, 35-38	3.5	70
529	Shape- and Size-controlled Growth of ZnS Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8469-8474	3.8	70
528	Thermal conductivity of nanostructured boron nitride materials. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10354-7	3.4	70
527	Purification of boron nitride nanotubes through polymer wrapping. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1525-8	3.4	70
526	Self-Assembly of Two-Dimensional Bimetallic Nickel©obalt Phosphate Nanoplates into One-Dimensional Porous Chainlike Architecture for Efficient Oxygen Evolution Reaction. <i>Chemistry of Materials</i> , 2020 , 32, 7005-7018	9.6	70
525	High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays. <i>Applied Physics Letters</i> , 2007 , 90, 123101	3.4	69
524	Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. <i>ACS Applied Materials & Drug-Delivery Systems</i> . 7, 17217-25	9.5	68
523	Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope. <i>Acta Materialia</i> , 2007 , 55, 1293-1298	8.4	68
522	Temperature measurement using a gallium-filled carbon nanotube nanothermometer. <i>Applied Physics Letters</i> , 2003 , 83, 2913-2915	3.4	68
521	Characteristics of Ti50Pd30Ni20 high-temperature shape memory alloy. <i>Intermetallics</i> , 1995 , 3, 35-46	3.5	68
520	High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 681, 1-9	5.3	67
519	In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. <i>Nanomedicine</i> , 2015 , 10, 1911-22	5.6	67
518	Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. <i>Applied Physics Letters</i> , 2006 , 88, 123107	3.4	67
517	Fabrication of ZnSBiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). <i>Applied Physics Letters</i> , 2004 , 85, 2932-2934	3.4	67
516	A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch. <i>Small</i> , 2005 , 1, 1088-93	11	67

515	Improvement of a Ti50Pd30Ni20 high temperature shape memory alloy by thermomechanical treatments. <i>Scripta Metallurgica Et Materialia</i> , 1994 , 30, 1349-1354		67	
514	Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. <i>Materials Today</i> , 2017 , 20, 611-628	21.8	66	
513	In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives. <i>Advanced Materials</i> , 2017 , 29, 1606922	24	65	
512	Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3097-3102	13	65	
511	Heterostructures and superlattices in one-dimensional nanoscale semiconductors. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5683		65	
510	DNA-mediated assembly of boron nitride nanotubes. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1581-5	4.5	65	
509	Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. <i>Nano Letters</i> , 2006 , 6, 1136-40	11.5	64	
508	Semiconducting BCN nanotubes with few layers. <i>Chemical Physics Letters</i> , 2002 , 359, 220-228	2.5	64	
507	Boron Nitride Nanotubes Filled with Ni and NiSi2 Nanowires in Situ. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 6539-6543	3.4	64	
506	Multishelled Co3O4-Fe3O4 hollow spheres with even magnetic phase distribution: Synthesis, magnetic properties and their application in water treatment. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17680		63	
505	A Two-Stage Route to Coaxial Cubic-Aluminum-Nitride B oron- Nitride Composite Nanotubes. <i>Advanced Materials</i> , 2004 , 16, 929-933	24	63	
504	Nanotubes of magnesium borate. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 1836-8	16.4	63	
503	Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. <i>Diamond and Related Materials</i> , 2003 , 12, 1269-1274	3.5	62	
502	Fabrication, characterization, and mechanical properties of spark plasma sintered Al B N nanoparticle composites. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 642, 104-112	5.3	61	
501	Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects. <i>Advanced Materials</i> , 2010 , 22, 4071-5	24	61	
500	Field nanoemitters: ultrathin BN nanosheets protruding from Si3N4 nanowires. <i>Nano Letters</i> , 2006 , 6, 2982-6	11.5	61	
499	Quasi-aligned single-crystalline GaN nanowire arrays. <i>Applied Physics Letters</i> , 2005 , 87, 073106	3.4	61	
498	Ultrahigh torsional stiffness and strength of boron nitride nanotubes. <i>Nano Letters</i> , 2012 , 12, 6347-52	11.5	60	

497	Multibranched Junctions of Carbon Nanotubes via Cobalt Particles. Advanced Materials, 2009, 21, 4477-4	4 <u>44</u> 82	60
496	Photosensing performance of branched CdS/ZnO heterostructures as revealed by in situ TEM and photodetector tests. <i>Nanoscale</i> , 2014 , 6, 8084-90	7.7	59
495	Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. <i>NPG Asia Materials</i> , 2013 , 5, e53-e53	10.3	58
494	Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2530-5	4.5	58
493	Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes. <i>ACS Applied Materials & Damp; Interfaces</i> , 2011 , 3, 1352-8	9.5	58
492	Novel semiconducting nanowire heterostructures: synthesis, properties and applications. <i>Journal of Materials Chemistry</i> , 2009 , 19, 330-343		58
491	Optical properties of multiwall boron nitride nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4147-4151	1.3	57
490	Indium-Assisted Growth of Aligned Ultra-Long Silica Nanotubes. Advanced Materials, 2004, 16, 37-40	24	57
489	Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity. <i>Applied Physics Letters</i> , 2002 , 81, 5225-5227	3.4	57
488	Mechanical and Thermal Properties of Polymethyl Methacrylate-BN Nanotube Composites. <i>Journal of Nanomaterials</i> , 2008 , 2008, 1-5	3.2	56
487	High-Yield Synthesis of Rhombohedral Boron Nitride Triangular Nanoplates. <i>Advanced Materials</i> , 2007 , 19, 2141-2144	24	56
486	New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 6193-6	3.4	56
485	High-temperature shape memory effect in Ti50Pd50 lkNix (x = 10, 15, 20) alloys. <i>Materials Letters</i> , 1995 , 22, 241-248	3.3	55
484	High-performance Schottky solar cells using ZrS2 nanobelt networks. <i>Energy and Environmental Science</i> , 2011 , 4, 2586	35.4	54
483	Comparative fracture toughness of multilayer graphenes and boronitrenes. <i>Nano Letters</i> , 2015 , 15, 689-	94 .5	53
482	Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces. <i>ACS Nano</i> , 2011 , 5, 7362-8	16.7	53
481	Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. <i>ACS Nano</i> , 2010 , 4, 2452-8	16.7	53
480	Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy. <i>Acta Materialia</i> , 2006 , 54, 2567-2576	8.4	53

(2019-2003)

479	Production and State-of-the-Art Characterization of Aligned Nanotubes with Homogeneous BCxN (1战场) Compositions. <i>Advanced Materials</i> , 2003 , 15, 1899-1903	24	53
478	Electrochemical Deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties. <i>Science of Advanced Materials</i> , 2010 , 2, 336-358	2.3	53
477	A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. <i>Nano Energy</i> , 2020 , 70, 104550	17.1	52
476	Excellent field-emission properties of P-doped GaN nanowires. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 21521-4	3.4	52
475	Fabrication of metal-semiconductor nanowire heterojunctions. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2140-4	16.4	52
474	Unconventional gallium oxide nanowires. <i>Small</i> , 2005 , 1, 883-8	11	52
473	Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. <i>Nanoscale</i> , 2018 , 10, 17477-17493	7.7	52
472	Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. <i>Materials and Design</i> , 2015 , 88, 451-460	8.1	51
471	Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. <i>Nanomedicine</i> , 2014 , 9, 773-88	5.6	51
470	Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. <i>Chemical Communications</i> , 2011 , 47, 12098-100	5.8	51
469	Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3973-8	3.4	51
468	Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2006 , 203, 1064-1068	1.6	51
467	Fabrication of Silica-Shielded GallnS MetalBemiconductor Nanowire Heterojunctions. <i>Advanced Materials</i> , 2005 , 17, 1964-1969	24	51
466	Nanotubes of boron nitride filled with molybdenum clusters. <i>Journal of Nanoscience and Nanotechnology</i> , 2001 , 1, 49-54	1.3	51
465	Densely Interconnected Porous BN Frameworks for Multifunctional and Isotropically Thermoconductive Polymer Composites. <i>Advanced Functional Materials</i> , 2018 , 28, 1801205	15.6	50
464	Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 3120-5	11.5	50
463	Tailoring the Optical Properties of Epitaxially Grown Biaxial ZnO/Ge, and Coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge Heterostructures. <i>Advanced Functional Materials</i> , 2007 , 17, 270-276	15.6	50
462	Self-sacrificial templated synthesis of a three-dimensional hierarchical macroporous honeycomb-like ZnO/ZnCo2O4 hybrid for carbon monoxide sensing. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3415-3425	13	49

461	Self-organized hierarchical ZnS/SiO(2) nanowire heterostructures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7199-202	3.4	49
460	Indium-assisted synthesis on GaN nanotubes. <i>Applied Physics Letters</i> , 2004 , 84, 3912-3914	3.4	49
459	Single-Crystalline, Submicrometer-Sized ZnSe Tubes. <i>Advanced Materials</i> , 2005 , 17, 975-979	24	49
458	Morphology-tunable In2Se3 nanostructures with enhanced electrical and photoelectrical performances via sulfur doping. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6630		48
457	Synthesis, Analysis, and Electrical Property Measurements of Compound Nanotubes in the B-C-N Ceramic System. <i>MRS Bulletin</i> , 2004 , 29, 38-42	3.2	48
456	Al-based composites reinforced with AlB2, AlN and BN phases: Experimental and theoretical studies. <i>Materials and Design</i> , 2018 , 141, 88-98	8.1	47
455	One stone, two birds: Gastrodia elata-derived heteroatom-doped carbon materials for efficient oxygen reduction electrocatalyst and as fluorescent decorative materials. <i>Nano Energy</i> , 2013 , 2, 1261-1	2 ¹⁷ 0 ¹	47
454	Production and characterization of coaxial nanotube junctions and networks of CNx/CNT. <i>Nano Letters</i> , 2007 , 7, 2220-6	11.5	47
453	Growth of Single-Crystalline Cubic GaN Nanotubes with Rectangular Cross-Sections. <i>Advanced Materials</i> , 2004 , 16, 1465-1468	24	47
452	Insulating tubular BN sheathing on semiconducting nanowires. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14226-7	16.4	47
451	Growth of Wurtzite ZnS Micrometer-Sized Diskettes and Nanoribbon Arrays with Improved Luminescence. <i>Advanced Functional Materials</i> , 2005 , 15, 757-762	15.6	47
450	Comparative studies on the electrical and mechanical behavior of catalytically grown multiwalled carbon nanotubes and scrolled graphene. <i>Nano Letters</i> , 2011 , 11, 3295-300	11.5	45
449	Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. <i>Chemical Physics Letters</i> , 2006 , 421, 86-90	2.5	45
448	Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. <i>Nanoscale</i> , 2015 , 7, 18992-7	7.7	44
447	Improved TiO2 photocatalytic reduction by the intrinsic electrostatic potential of BN nanotubes. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1220-4	4.5	44
446	Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 347-352	2.6	44
445	Growth and Field-Emission Properties of Crystalline, Thin-Walled Carbon Microtubes. <i>Advanced Materials</i> , 2004 , 16, 153-156	24	44
444	Synthesis and structure of InP nanowires and nanotubes. <i>Chemical Physics Letters</i> , 2003 , 376, 676-682	2.5	44

(2009-2019)

443	ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8460-8471	13	43	
442	Chemical unzipping of WS2 nanotubes. ACS Nano, 2013, 7, 7311-7	16.7	43	
441	Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13588-92	11.5	43	
440	Solution Growth and Cathodoluminescence of Novel SnO2 CoreBhell Homogeneous Microspheres. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8235-8240	3.8	43	
439	Systematic investigation of the formation of 1D alpha-Si(3)N(4) nanostructures by using a thermal-decomposition/nitridation process. <i>Chemistry - A European Journal</i> , 2006 , 12, 2987-93	4.8	43	
438	Zinc-Tiered Synthesis of 3D Graphene for Monolithic Electrodes. <i>Advanced Materials</i> , 2019 , 31, e190118	3 6 24	42	
437	Influence of fuel-oxygen content on morphology and nanostructure of soot particles. <i>Combustion and Flame</i> , 2019 , 205, 206-219	5.3	42	
436	Multiscale Buffering Engineering in Silicon-Carbon Anode for Ultrastable Li-Ion Storage. <i>ACS Nano</i> , 2019 , 13, 10179-10190	16.7	42	
435	Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy. <i>ACS Nano</i> , 2014 , 8, 292-301	16.7	42	
434	Recent developments in inorganically filled carbon nanotubes: successes and challenges. <i>Science and Technology of Advanced Materials</i> , 2010 , 11, 054501	7.1	42	
433	Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. <i>Nanotechnology</i> , 2009 , 20, 085705	3.4	42	
432	Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors. <i>Chemistry of Materials</i> , 2008 , 20, 6779-6783	9.6	42	
431	Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals. <i>Chemistry - A European Journal</i> , 2004 , 10, 3667-72	4.8	42	
430	Single-crystalline nanotubes of IIB-VI semiconductors. <i>Applied Physics Letters</i> , 2005 , 87, 113107	3.4	42	
429	Multimodal luminescent-magnetic boron nitride nanotubes@NaGdFŒu structures for cancer therapy. <i>Chemical Communications</i> , 2014 , 50, 4371-4	5.8	41	
428	Nanomaterial engineering and property studies in a transmission electron microscope. <i>Advanced Materials</i> , 2012 , 24, 177-94	24	41	
427	BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: novel magneto-operable nanocomposites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1007-1011		41	
426	In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. <i>Nano Letters</i> , 2009 , 9, 2251-4	11.5	41	

425	Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction. <i>Small</i> , 2005 , 1, 1094-9	11	41
424	Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites. <i>Journal of Physics: Conference Series</i> , 2013 , 471, 012003	0.3	40
423	Wurtzite-type faceted single-crystalline GaN nanotubes. <i>Applied Physics Letters</i> , 2006 , 88, 093120	3.4	40
422	Synthesis and Field-Emission Properties of Ga2O3🛭 Nanocables. <i>Chemistry of Materials</i> , 2004 , 16, 5158-	5 <u>3.</u> 6 1	40
421	Nonwetting White graphenel films. Acta Materialia, 2013, 61, 1266-1273	8.4	39
420	Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. <i>Nanoscale Research Letters</i> , 2013 , 8, 3	5	39
419	Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. <i>Nano Letters</i> , 2013 , 13, 1034-40	11.5	39
418	Disordered state in first-order phase transitions: Hexagonal-to-cubic and cubic-to-hexagonal transitions in boron nitride. <i>Physical Review B</i> , 1998 , 57, 5655-5660	3.3	39
417	Si nanowire semisphere-like ensembles as field emitters. <i>Chemical Communications</i> , 2007 , 4093-5	5.8	39
416	Ga-Doped ZnS Nanowires as Precursors for ZnO/ZnGa2O4 Nanotubes. <i>Advanced Materials</i> , 2008 , 20, 810-814	24	39
415	Large-scale fabrication of boron nitride nanohorn. <i>Applied Physics Letters</i> , 2005 , 87, 063107	3.4	39
414	SnO2 nanoparticle-functionalized boron nitride nanotubes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8548-50	3.4	39
413	SiO2-sheathed InS nanowires and SiO2 nanotubes. <i>Applied Physics Letters</i> , 2003 , 83, 3999-4001	3.4	39
412	Field emission properties of macroscopic single-walled carbon nanotube strands. <i>Applied Physics Letters</i> , 2005 , 86, 223114	3.4	39
411	Large-scale synthesis and structure of boron nitride sub-micron spherical particles. <i>Chemical Communications</i> , 2002 , 2826-7	5.8	39
410	Cross-Bar SnO2-NiO Nanofiber-Array-Based Transparent Photodetectors with High Detectivity. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901048	6.4	39
409	Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 323-9	3.5	39
408	Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. <i>Acta Materialia</i> , 2012 , 60, 6213-6222	8.4	38

(2005-2010)

407	Interface dynamic behavior between a carbon nanotube and metal electrode. <i>Advanced Materials</i> , 2010 , 22, 93-8	24	38
406	Spontaneous coating of carbon nanotubes with an ultrathin polypyrrole layer. <i>Chemistry - A European Journal</i> , 2007 , 13, 7644-9	4.8	38
405	Unconventional zigzag indium phosphide single-crystalline and twinned nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20129-32	3.4	38
404	Melting and expansion behavior of indium in carbon nanotubes. <i>Applied Physics Letters</i> , 2002 , 81, 4133-4	1 <u>3.3</u> 5	38
403	Boron-doped carbon fullerenes and nanotubules formed through electron irradiation-induced solid-state phase transformation. <i>Applied Physics Letters</i> , 1998 , 72, 2108-2110	3.4	38
402	Carbon "onions" as point electron sources. ACS Nano, 2010, 4, 4396-402	16.7	37
401	Formation of crystalline SrAl(2)O(4) nanotubes by a roll-up and post-annealing approach. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4922-6	16.4	37
400	Grafting Boron Nitride Nanotubes: From Polymers to Amorphous and Graphitic Carbon. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1230-1233	3.8	37
399	Phases and crystallization of encapsulated cobalt nanorods inside BN nanotubes. <i>Acta Materialia</i> , 2004 , 52, 601-606	8.4	37
398	Single-Catalyst Confined Growth of ZnS/Si Composite Nanowires. <i>Advanced Materials</i> , 2005 , 17, 225-230)24	37
397	Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application. <i>ChemSusChem</i> , 2020 , 13, 1645-1655	8.3	37
396	Cheap, gram-scale fabrication of BN nanosheets via substitution reaction of graphite powders and their use for mechanical reinforcement of polymers. <i>Scientific Reports</i> , 2014 , 4, 4211	4.9	36
395	Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy, 2020, 70, 1045	68 .1	36
394	Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. <i>Materials Science & Discience & Discien</i>	5.3	36
393	Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations. <i>Physical Review Letters</i> , 2012 , 109, 025504	7.4	36
392	Synthesis of chemically bonded CNTgraphene heterostructure arrays. RSC Advances, 2012, 2, 8250	3.7	36
391	Dielectric and thermal properties of epoxy/boron nitride nanotube composites. <i>Pure and Applied Chemistry</i> , 2010 , 82, 2175-2183	2.1	36
390	Single-Crystalline 🗚 O Nanotubes Converted from Al O C Nanowires. <i>Advanced Materials</i> , 2005 , 17, 1401-1405	24	36

389	Field emission from individual BITN nanotube rope. Applied Physics Letters, 2002, 81, 1083-1085	3.4	36
388	Synthesis, HRTEM and electron diffraction studies of B/N-doped C and BN nanotubes. <i>Diamond and Related Materials</i> , 2001 , 10, 63-67	3.5	36
387	Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. <i>Nanomedicine</i> , 2016 , 11, 447-63	5.6	36
386	Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. <i>ACS Nano</i> , 2014 , 8, 11305-12	16.7	35
385	Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. <i>Nature Communications</i> , 2011 , 2, 421	17.4	35
384	pH sensor based on boron nitride nanotubes. <i>Nanotechnology</i> , 2009 , 20, 415501	3.4	35
383	Single-Crystalline and Twinned Zn3P2 Nanowires: Synthesis, Characterization, and Electronic Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16405-16410	3.8	35
382	Tailorable nanoarchitecturing of bimetallic nickellobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3035-3047	13	34
381	Electron emission from individual graphene nanoribbons driven by internal electric field. <i>ACS Nano</i> , 2012 , 6, 705-11	16.7	34
380	Solid-solution semiconductor nanowires in pseudobinary systems. <i>Nano Letters</i> , 2013 , 13, 85-90	11.5	34
379	BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5219		34
378	Bicrystalline Zn3P2 and Cd3P2 Nanobelts and Their Electronic Transport Properties. <i>Chemistry of Materials</i> , 2008 , 20, 7319-7323	9.6	34
377	Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 2551-2555	3	34
376	Single-crystalline cubic structured InP nanosprings. <i>Applied Physics Letters</i> , 2006 , 88, 243106	3.4	34
375	Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. <i>Chemical Communications</i> , 2015 , 51, 7104-7	5.8	33
374	Simultaneous electropolymerization and electro-click functionalization for highly versatile surface platforms. <i>ACS Nano</i> , 2014 , 8, 5240-8	16.7	33
373	Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine. <i>Nanobiomedicine</i> , 2014 , 1, 7	4.8	33
372	Fabrication and characteristics of melt-spun Al ribbons reinforced with nano/micro-BN phases. <i>Acta Materialia</i> , 2013 , 61, 7604-7615	8.4	33

(2002-2012)

371	High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer composites. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 314205	1.8	33
370	Local Coulomb explosion of boron nitride nanotubes under electron beam irradiation. <i>ACS Nano</i> , 2013 , 7, 3491-7	16.7	33
369	Bicrystalline ZnS Microbelts. <i>Crystal Growth and Design</i> , 2009 , 9, 2790-2793	3.5	33
368	Molecule Ordering Triggered by Boron Nitride Nanotubes and Green Chemical Functionalization of Boron Nitride Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18545-18549	3.8	33
367	Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials. <i>Advanced Materials</i> , 2020 , 32, e1904094	24	33
366	BCN nanotubes as highly sensitive torsional electromechanical transducers. <i>Nano Letters</i> , 2014 , 14, 613	217.5	32
365	Phonon-assisted electron emission from individual carbon nanotubes. <i>Nano Letters</i> , 2011 , 11, 734-9	11.5	32
364	Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition. <i>Solid State Communications</i> , 2011 , 151, 183-186	1.6	32
363	Cables of BN-insulated BIIN nanotubes. <i>Applied Physics Letters</i> , 2003 , 82, 1275-1277	3.4	32
362	Photocatalysis with Pt-Au-ZnO and Au-ZnO Hybrids: Effect of Charge Accumulation and Discharge Properties of Metal Nanoparticles. <i>Langmuir</i> , 2018 , 34, 7334-7345	4	32
361	Enhanced Field Emission and Optical Properties of Controlled Tapered ZnS Nanostructures. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8297-8304	3.8	31
360	Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 044605	7.1	31
359	Unconventional ribbon-shaped beta-Ga2O3 tubes with mobile Sn nanowire fillings. <i>ACS Nano</i> , 2008 , 2, 107-12	16.7	31
358	Synthesis and field emission of carbon nanotubular fibers doped with high nitrogen content. <i>Chemical Communications</i> , 2003 , 3050-1	5.8	31
357	One-Dimensional Nanostructures in Porous Anodic Alumina Membranes. <i>Science of Advanced Materials</i> , 2010 , 2, 273-294	2.3	31
356	Thin boron nitride nanotubes with exceptionally high strength and toughness. <i>Nanoscale</i> , 2013 , 5, 4840)- 6 .7	30
355	Enhanced Field-Emission and Red Lasing of Ordered CdSe Nanowire Branched Arrays. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9740-9745	3.8	30
354	Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM. <i>Physica B: Condensed Matter</i> , 2002 , 323, 60-66	2.8	30

353	Young's Modulus and Tensile Strength of TiC MXene Nanosheets As Revealed by TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. <i>Nano Letters</i> , 2020 , 20, 5900-5908	11.5	29
352	ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8358-8365	13	29
351	Heterostructures of vertical, aligned and dense SnO2 nanorods on graphene sheets: in situ TEM measured mechanical, electrical and field emission properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19196		29
350	Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts. <i>Advanced Materials</i> , 2010 , 22, 5350-5	24	29
349	Synthesis and Structures of High-Quality Single-Crystalline II3№2Semiconductors Nanobelts. Journal of Physical Chemistry C, 2007 , 111, 5044-5049	3.8	29
348	Nanoscale Oxygen Generators: MgO2-Based Fillings of BN Nanotubes. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8726-8729	3.4	29
347	Engineering Platinum-Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17712-17718	16.4	28
346	NiCo2O4 Nanostructures as a Promising Alternative for NiO Photocathodes in p-Type Dye-Sensitized Solar Cells with High Efficiency. <i>Energy Technology</i> , 2014 , 2, 517-521	3.5	28
345	Growth of large-scale boron nanowire patterns with identical base-up mode and in situ field emission studies of individual boron nanowire. <i>Small</i> , 2014 , 10, 685-93	11	28
344	Chemical peeling and branching of boron nitride nanotubes in dimethyl sulfoxide. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2044-7	16.4	28
343	In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. <i>Applied Physics Letters</i> , 2006 , 88, 123101	3.4	28
342	Carbon-coated single-crystalline zinc sulfide nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2077	′7 5 .840	28
341	In situ fabrication and investigation of nanostructures and nanodevices with a microscope. <i>Chemical Society Reviews</i> , 2016 , 45, 2694-713	58.5	28
340	Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. <i>Nano Research</i> , 2015 , 8, 2063-2072	10	27
339	Individual boron nanowire has ultra-high specific Young's modulus and fracture strength as revealed by in situ transmission electron microscopy. <i>ACS Nano</i> , 2013 , 7, 10112-20	16.7	27
338	Multi-walled BN nanotubes synthesized by carbon-free method. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2670-2674	3.3	27
337	Nanocomposites: synthesis and elemental mapping of aligned BIIII nanotubes. <i>Chemical Physics Letters</i> , 2002 , 360, 1-7	2.5	27
336	Cerium Phosphate Nanotubes: Synthesis, Valence State, and Optical Properties. <i>Angewandte Chemie</i> , 2005 , 117, 582-585	3.6	27

(2018-2018)

335	Three-dimensional electrode with conductive Cu framework for stable and fast Li-ion storage. Energy Storage Materials, 2018 , 11, 83-90	19.4	26
334	Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. <i>Nanoscale</i> , 2012 , 4, 6318-24	7.7	26
333	Nanostructured solar cells harvesting multi-type energies. <i>Energy and Environmental Science</i> , 2012 , 5, 6040	35.4	26
332	Nonwetting and optical properties of BN nanosheet films. <i>Surface Innovations</i> , 2013 , 1, 32-39	1.9	26
331	Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. <i>Nanotechnology</i> , 2010 , 21, 375601	3.4	26
330	Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. ACS Nano, 2009, 3, 2632-8	16.7	26
329	BN tubular layer-sheathed CaS:Eu(2+) nanowires as stable red-light-emitting nanophosphors. <i>Chemical Communications</i> , 2009 , 6631-3	5.8	26
328	Boron nitride nanotubes as nanocrucibles for morphology and phase transformations in encapsulated nanowires of the MgD system. <i>Acta Materialia</i> , 2004 , 52, 3295-3303	8.4	26
327	Sandwich-Structured Ordered Mesoporous Polydopamine/MXene Hybrids as High-Performance Anodes for Lithium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 14993-15001	9.5	25
326	Pectin-coated boron nitride nanotubes: In vitro cyto-/immune-compatibility on RAW 264.7 macrophages. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2016 , 1860, 775-84	4	25
325	Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization. <i>RSC Advances</i> , 2012 , 2, 6200	3.7	25
324	Enhanced Field Emission Performance of Ga-Doped In2O3(ZnO)3 Superlattice Nanobelts. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24564-24568	3.8	25
323	Sb(2)O(3) nanobelt networks for excellent visible-light-range photodetectors. <i>Nanotechnology</i> , 2011 , 22, 165704	3.4	25
322	ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. <i>Journal of Materials Science</i> , 2008 , 43, 1460-1470	4.3	25
321	Hollow and polygonous microtubes of monocrystalline indium germanate. <i>Angewandte Chemie - International Edition</i> , 2005 , 45, 228-31	16.4	25
320	Synthesis of nanocrystalline nitrogen-rich carbon nitride powders at high pressure. <i>Diamond and Related Materials</i> , 2002 , 11, 1885-1889	3.5	25
319	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. <i>ACS Applied Materials & Discrete Sizes</i> , 2018, 10, 37046-37056	9.5	25
318	Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. <i>Advanced Materials</i> , 2018 , 30, e1801600	24	24

317	Nitrogen-Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 864-872	3.1	24
316	Quasi-Aligned Ga2O3 Nanowires Grown on Brass Wire Meshes and Their Electrical and Field-Emission Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1980-1983	3.8	24
315	Prospective important semiconducting nanotubes: synthesis, properties and applications. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7592		24
314	Fullerene and onion formation under electron irradiation of boron-doped graphite. <i>Carbon</i> , 1999 , 37, 293-299	10.4	24
313	Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM. <i>Nano Letters</i> , 2016 , 16, 6008-6013	11.5	24
312	Nanowires sheathed inside nanotubes: Manipulation, properties and applications. <i>Progress in Materials Science</i> , 2015 , 70, 1-49	42.2	23
311	Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. <i>ACS Applied Materials & Drug Resistance</i> , 2017, 9, 32498-32508	9.5	23
310	Synthesis and Characterization of Folate Conjugated Boron Nitride Nanocarriers for Targeted Drug Delivery. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 28096-28105	3.8	23
309	Oxygen Vacancy Driven Modulations in In2O3 Pyramidal Beaded Nanowires. <i>Crystal Growth and Design</i> , 2012 , 12, 4935-4943	3.5	23
308	Asymmetric tungsten oxide nanobrushes via oriented attachment and Ostwald ripening. <i>CrystEngComm</i> , 2011 , 13, 4074	3.3	23
307	Effect of crystalline filling on the mechanical response of carbon nanotubes. <i>Carbon</i> , 2009 , 47, 541-544	10.4	23
306	Observations of the electrical behaviour of catalytically grown scrolled graphene. <i>Carbon</i> , 2011 , 49, 182	21:0.8128	323
305	Nanofabrication on ZnO nanowires. <i>Applied Physics Letters</i> , 2006 , 89, 243111	3.4	23
304	Single-crystalline trumpetlike zinc phosphide nanostructures. <i>Applied Physics Letters</i> , 2006 , 88, 143105	3.4	23
303	Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. <i>International Journal of Nanotechnology</i> , 2007 , 4, 730	1.5	23
302	Formation, structure, and structural properties of a new filamentary tubular form: hollow conical-helix of graphitic boron nitride. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8032-8	16.4	23
301	Improved cycling stability of NiS2 cathodes through designing a liwanolhollow structure. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11978-11984	13	23
300	Below 200 LC Fabrication Strategy of Black-Phase CsPbI3 Film for Ambient-Air-Stable Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000014	7.1	22

(2004-2010)

299	Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1⊠S nanostructures. <i>Pure and Applied Chemistry</i> , 2010 , 82, 2027-2053	2.1	22
298	Properties and engineering of individual inorganic nanotubes in a transmission electron microscope. <i>Journal of Materials Chemistry</i> , 2009 , 19, 909		22
297	Heteroepitaxial Growth of Orientation-Ordered ZnS Nanowire Arrays. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12299-12303	3.8	22
296	DonorAcceptor Nanoensembles Based on Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 934	-9 <u>3.</u> 8	22
295	Nanotubes in a gradient electric field as revealed by STM TEM technique. <i>Nano Research</i> , 2008 , 1, 166-1	75 ⊙	22
294	Tapered Carbon Nanotubes from Activated Carbon Powders. <i>Advanced Materials</i> , 2006 , 18, 197-200	24	22
293	Fabrication of ZnO nanoplate-nanorod junctions. <i>Small</i> , 2006 , 2, 62-5	11	22
292	C to BN conversion in multi-walled nanotubes as revealed by energy-filtering transmission electron microscopy. <i>Chemical Physics Letters</i> , 2001 , 346, 29-34	2.5	22
291	Hollow Zinc Oxide Microsphere Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. <i>ACS Applied Nano Materials</i> , 2020 , 3, 8982-8996	5.6	22
2 90	Reversible Tuning of Individual Carbon Nanotube Mechanical Properties via Defect Engineering. <i>Nano Letters</i> , 2016 , 16, 5221-7	11.5	21
289	Thermal stability of CsPbBr3 perovskite as revealed by in situ transmission electron microscopy. <i>APL Materials</i> , 2019 , 7, 071110	5.7	21
288	Toward Stronger Al B N Nanotube Composite Materials: Insights into Bonding at the Al/BN Interface from First-Principles Calculations. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 26894-26901	3.8	21
287	Nanomaterials: Exfoliating the inorganics. <i>Nature Nanotechnology</i> , 2011 , 6, 200-1	28.7	21
286	Recent Advances in Boron Nitride Nanotubes and Nanosheets. <i>Israel Journal of Chemistry</i> , 2010 , 50, 40.	5- <u>4</u> .46	21
285	Effect of Al-rich off-stoichiometry on the yield stress of binary Ni3Al single crystals. <i>Acta Materialia</i> , 1998 , 46, 2695-2703	8.4	21
284	An athermal deformation model of the yield stress anomaly in Ni3Al. <i>Intermetallics</i> , 2007 , 15, 1322-133	13.5	21
283	Uniform and high-quality submicrometer tubes of GaS layered crystals. <i>Applied Physics Letters</i> , 2005 , 87, 153112	3.4	21
282	Synthesis of Crystalline Silicon Tubular Nanostructures with ZnS Nanowires as Removable Templates. <i>Angewandte Chemie</i> , 2004 , 116, 65-68	3.6	21

281	Room temperature carbon monoxide oxidation based on two-dimensional gold-loaded mesoporous iron oxide nanoflakes. <i>Chemical Communications</i> , 2018 , 54, 8514-8517	5.8	21
2 80	Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume. <i>Physical Review B</i> , 2009 , 80,	3.3	20
279	Template-free synthesis on single-crystalline InP nanotubes. <i>Applied Physics Letters</i> , 2004 , 85, 3869-387	13.4	20
278	Electron Field Emission from Self-Organized Micro-Emitters of sp3-Bonded 5H Boron Nitride with Very High Current Density at Low Electric Field. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 5182-5184	3.4	20
277	Synthesis of carbon nanotubes below room temperature. <i>Carbon</i> , 2001 , 39, 155-158	10.4	20
276	Experimental Analysis of the Morphology and Nanostructure of Soot Particles for Butanol/Diesel Blends at Different Engine Operating Modes. <i>Energy & Energy </i>	4.1	19
275	Defects and Deformation of Boron Nitride Nanotubes Studied by Joint Nanoscale Mechanical and Infrared Near-Field Microscopy. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1945-1951	3.8	19
274	Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes. Journal of Physical Chemistry Letters, 2016 , 7, 289-94	6.4	19
273	h-BN nanosheets as simple and effective additives to largely enhance the activity of Au/TiO2 plasmonic photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 79-83	3.6	19
272	High-yield synthesis of boron nitride nanoribbons via longitudinal splitting of boron nitride nanotubes by potassium vapor. <i>ACS Nano</i> , 2014 , 8, 9867-73	16.7	19
271	n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays. <i>Nanoscale</i> , 2012 , 4, 737-41	7.7	19
270	Crystallography of Novel T-Shaped ZnS Nanostructures and Their Cathodoluminescence. <i>Crystal Growth and Design</i> , 2010 , 10, 4143-4147	3.5	19
269	The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa2O4 nanorods. <i>Nanotechnology</i> , 2009 , 20, 365705	3.4	19
268	Synthesis of InN/InP core/sheath nanowires. <i>Applied Physics Letters</i> , 2004 , 84, 1546-1548	3.4	19
267	Nanoanalysis by a high-resolution energy filtering transmission electron microscope. <i>Microscopy Research and Technique</i> , 2004 , 63, 140-8	2.8	19
266	Direct Pyrolysis Method for Superconducting Crystalline MgB2 Nanowires. <i>Chemistry of Materials</i> , 2003 , 15, 3194-3197	9.6	19
265	Nanocages of layered BN: Super-high-pressure nanocells for formation of solid nitrogen. <i>Journal of Chemical Physics</i> , 2002 , 116, 8523	3.9	19
264	Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycol. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2019 , 745, 74-81	5.3	19

263	Torsional Resonators Based on Inorganic Nanotubes. <i>Nano Letters</i> , 2017 , 17, 28-35	11.5	18
262	Melting of metallic electrodes and their flowing through a carbon nanotube channel within a device. <i>Advanced Materials</i> , 2013 , 25, 2693-9	24	18
261	Two-probe electrical measurements in transmission electron microscopesbehavioral control of tungsten microwires. <i>Microscopy Research and Technique</i> , 2009 , 72, 93-100	2.8	18
260	Electron-Beam-Induced Synthesis and Characterization of W18O49 Nanowires. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5856-5859	3.8	18
259	Synthesis and optical study of crystalline GaP nanoflowers. <i>Applied Physics Letters</i> , 2005 , 86, 083107	3.4	18
258	SiØnS and SiØnSe core/shell nanocrystal structures. <i>Applied Physics Letters</i> , 2004 , 85, 3593-3595	3.4	18
257	Real-time observation of liquid Indium unusual behavior inside silica nanotubes. <i>Chemical Physics Letters</i> , 2005 , 409, 75-80	2.5	18
256	Magnetically assembled Ni@Ag urchin-like ensembles with ultra-sharp tips and numerous gaps for SERS applications. <i>Small</i> , 2014 , 10, 2564-9	11	17
255	Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope. <i>Small</i> , 2017 , 13, 1701564	11	17
254	Metal ion implantation of multiwalled boron nitride nanotubes. Scripta Materialia, 2012 , 67, 507-510	5.6	17
253	Morphology-driven nonwettability of nanostructured BN surfaces. <i>Langmuir</i> , 2013 , 29, 7529-33	4	17
252	352 nm ultraviolet emission from high-quality crystalline AlN whiskers. <i>Nanotechnology</i> , 2010 , 21, 7570	83.4	17
251	Current imaging and electromigration-induced splitting of GaN nanowires as revealed by conductive atomic force microscopy. <i>ACS Nano</i> , 2010 , 4, 2422-8	16.7	17
250	High-yield synthesis of single-crystalline zinc oxide nanobelts and their applications in novel Schottky solar cells. <i>Chemical Communications</i> , 2011 , 47, 8247-9	5.8	17
249	Multiwalled Boron Nitride Nanotubes: Growth, Properties, and Applications 2009, 23-44		17
248	High-resolution analytical electron microscopy of boron nitrides laser heated at high pressure. Journal of Electron Microscopy, 1997 , 46, 281-292		17
247	New Crystalline Phase Induced by Boron Nitride Nanotubes in Polyaniline. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17592-17595	3.8	17
246	Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23170-4	3.4	17

245	Peculiarities of Fe?Ni alloy crystallization and stability inside C nanotubes as derived through electron microscopy. <i>Acta Materialia</i> , 2005 , 53, 1583-1593	8.4	17
244	Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers. <i>Nanotechnology</i> , 2015 , 26, 115702	3.4	16
243	(Ni,Cu)/hexagonal BN nanohybrids INew efficient catalysts for methanol steam reforming and carbon monoxide oxidation. <i>Chemical Engineering Journal</i> , 2020 , 395, 125109	14.7	16
242	Synthesis of CeB6 thin films by physical vapor deposition and their field emission investigations. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2012 , 177, 117-120	3.1	16
241	Boron nitride nanotubes: nanoparticles functionalization and junction fabrication. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 530-4	1.3	16
240	Structure and cathodoluminescence of hierarchical Zn3P2InS nanotube/nanowire heterostructures. <i>Applied Physics Letters</i> , 2007 , 90, 073115	3.4	16
239	Discrimination of BITN nanotubes through energy-filtering electron microscopy. <i>Diamond and Related Materials</i> , 2005 , 14, 1857-1866	3.5	16
238	The First Template-Free Growth of Crystalline Silicon Microtubes. <i>Advanced Functional Materials</i> , 2004 , 14, 610-614	15.6	16
237	Iron in NiAl intermetallic compound: atomic arrangements and associated magnetic properties and electronic structures. <i>Intermetallics</i> , 1995 , 3, 293-301	3.5	16
236	Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. <i>Chemical Reviews</i> , 2021 ,	68.1	16
235	Probing electrochemical reactivity in an Sb2S3-containing potassium-ion battery anode: observation of an increased capacity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11424-11434	13	16
234	Hydrogen Storage in Carbon and Oxygen Co-Doped Porous Boron Nitrides. <i>Advanced Functional Materials</i> , 2021 , 31, 2007381	15.6	16
233	Synthesis of boron nitride nanostructures from borates of alkali and alkaline earth metals. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20749-20757	13	15
232	Structural analysis and atomic simulation of Ag/BN nanoparticle hybrids obtained by Ag ion implantation. <i>Materials and Design</i> , 2016 , 98, 167-173	8.1	15
231	Lateral piezopotential-gated field-effect transistor of ZnO nanowires. <i>Nano Energy</i> , 2015 , 13, 233-239	17.1	15
230	Dense and vertically-aligned centimetre-long ZnS nanowire arrays: ionic liquid assisted synthesis and their field emission properties. <i>Nanoscale</i> , 2012 , 4, 2658-62	7.7	15
229	Effect of Size-Dependent Thermal Instability on Synthesis of Zn2 SiO4-SiOx Core-Shell Nanotube Arrays and Their Cathodoluminescence Properties. <i>Nanoscale Research Letters</i> , 2010 , 5, 773-80	5	15
228	Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10714-9	3.4	15

227	New 300 kV Energy-Filtering Field Emission Electron Microscope. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, L1193-L1196	1.4	15	
226	Compliance to Schmid's law in the stress anomaly regime of binary stoichiometric Ni3Al. <i>Acta Materialia</i> , 1999 , 47, 3441-3446	8.4	15	
225	Atomic resolution of single-walled carbon nanotubes using a field emission high-resolution transmission electron microscope. <i>Carbon</i> , 1999 , 37, 1858-1860	10.4	15	
224	In situ fabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope. <i>Nanotechnology</i> , 2015 , 26, 154001	3.4	14	
223	Synthesis of Highly-Oriented Black CsPbI3 Microstructures for High-Performance Solar Cells. <i>Chemistry of Materials</i> , 2020 , 32, 3235-3244	9.6	14	
222	BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments. <i>Catalysis Science and Technology</i> , 2018 , 8, 1652-1662	5.5	14	
221	Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study. <i>Nanoscale</i> , 2016 , 8, 20080-20089	7.7	14	
220	Controlled synthesis of patterned W18O49 nanowire vertical-arrays and improved field emission performance by in situ plasma treatment. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3217	7.1	14	
219	Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in a transmission electron microscope. <i>Nanotechnology</i> , 2011 , 22, 485707	3.4	14	
218	Electrical field-assisted thermal decomposition of boron nitride nanotube: Experiments and first principle calculations. <i>Chemical Physics Letters</i> , 2009 , 480, 110-112	2.5	14	
217	Electrical properties of CNx nanotubes probed in a transmission electron microscope. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 90, 225-229	2.6	14	
216	Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14123-7	3.4	14	
215	Elastic deformation of helical-conical boron nitride nanotubes. <i>Journal of Chemical Physics</i> , 2003 , 119, 3436-3440	3.9	14	
214	Paramagnetic defects in boron nitride nanostructures. <i>Chemical Physics Letters</i> , 2005 , 413, 47-51	2.5	14	
213	New fullerenes in the B-C-N system: synthesis and analysis by an electron beam. <i>Journal of Electron Microscopy</i> , 1999 , 48, 701-709		14	
212	Mesoporous TiO-based architectures as promising sensing materials towards next-generation biosensing applications. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 1189-1207	7.3	14	
211	BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 250-261	3	14	
210	Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. <i>Advanced Functional Materials</i> , 2019 , 29, 1900311	15.6	13	

209	Solid solution, phase separation, and cathodoluminescence of GaP-ZnS nanostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 9199-204	9.5	13
208	Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution. <i>Soft Matter</i> , 2011 , 7, 8753	3.6	13
207	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus. <i>Nanotechnology</i> , 2009 , 20, 405706	3.4	13
206	The electrical delivery of a sublimable IIIVI compound by vapor transport in carbon nanotubes. <i>Carbon</i> , 2011 , 49, 3747-3754	10.4	13
205	Synthesis of metal metal metal metal metal metal metal metal solutions inside carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4414		13
204	Single crystal growth and characterization of binary stoichiometric and Al-rich Ni3Al. <i>Journal of Crystal Growth</i> , 1998 , 186, 624-628	1.6	13
203	Sn-Filled Single-Crystalline Wurtzite-Type ZnS Nanotubes. <i>Angewandte Chemie</i> , 2004 , 116, 4706-4709	3.6	13
202	Characteristics of Boron Nitride Nanotube Polyaniline Composites. <i>Angewandte Chemie</i> , 2005 , 117, 814	3 ₃ 86146	13
201	Covalent Functionalization: Towards Soluble Multiwalled Boron Nitride Nanotubes. <i>Angewandte Chemie</i> , 2005 , 117, 8146-8149	3.6	13
200	Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage. <i>Nano-Micro Letters</i> , 2020 , 12, 48	19.5	13
199	Flexible conductive polymer composite materials based on strutted graphene foam. <i>Composites Communications</i> , 2021 , 25, 100757	6.7	13
198	Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation. <i>Chemical Communications</i> , 2018 , 54, 9494-9497	5.8	12
197	Dispersion of boron nitride nanotubes in aqueous solution by simple aromatic molecules. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3028-33	1.3	12
196	Preparation and hydrogen sorption performances of BCNO porous microbelts with ultra-narrow and tunable pore widths. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2936-9	4.5	12
195	Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties. <i>Nanotechnology</i> , 2013 , 24, 175701	3.4	12
194	Noncovalent functionalization of boron nitride nanotubes using water-soluble synthetic polymers and the subsequent preparation of superhydrophobic surfaces. <i>Polymer Journal</i> , 2013 , 45, 567-570	2.7	12
193	Comparative study of the stability of sulfide materials encapsulated in and expelled from multi-walled carbon nanotube capsules. <i>Carbon</i> , 2011 , 49, 342-346	10.4	12
192	Rectangular or square, tapered, and single-crystal PbTe nanotubes. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3063		12

191	Synthesis and in-situ TEM transport measurements of individual GaN nanowires and nanotubes. Journal of Nanoscience and Nanotechnology, 2010 , 10, 3945-51	1.3	12	
190	MnBi-Catalyzed Synthesis and Tip-End-Induced Room Temperature Ferromagnetism of SiC/SiO2 CoreBhell Heterostructures. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18911-18915	3.8	12	
189	InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3665-3668	3.8	12	
188	Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes. <i>Nanotechnology</i> , 2006 , 17, 5882-5888	3.4	12	
187	Electronic structure of boron nitride cone-shaped nanostructures. <i>Physical Review B</i> , 2005 , 72,	3.3	12	
186	Synthesis and magnetic study for Ga1⊠MnxN whiskers. <i>Chemical Physics Letters</i> , 2005 , 405, 127-130	2.5	12	
185	Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. <i>Journal of Catalysis</i> , 2018 , 368, 217-227	7.3	12	
184	Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy. <i>Nano Letters</i> , 2015 , 15, 4922-7	11.5	11	
183	Molten Au/Ge alloy migration in Ge nanowires. <i>Nano Letters</i> , 2015 , 15, 2809-16	11.5	11	
182	Engineering Platinum®xygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. <i>Angewandte Chemie</i> , 2020 , 132, 17865-17871	3.6	11	
181	Growth of spherical boron oxynitride nanoparticles with smooth and petalled surfaces during a chemical vapour deposition process. <i>CrystEngComm</i> , 2016 , 18, 6689-6699	3.3	11	
180	Visualizing nanoscale heat pathways. <i>Nano Energy</i> , 2018 , 52, 323-328	17.1	11	
179	Formation of Crystalline SrAl2O4 Nanotubes by a Roll-Up and Post-Annealing Approach. <i>Angewandte Chemie</i> , 2006 , 118, 5044-5048	3.6	11	
178	Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. <i>Applied Physics Letters</i> , 2007 , 91, 223108	3.4	11	
177	Preparation and structure of magnesium oxide coated indium nanowires. <i>Chemical Physics Letters</i> , 2003 , 382, 374-380	2.5	11	
176	Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. <i>Chemical Physics Letters</i> , 2003 , 372, 635-639	2.5	11	
175	Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11580-4	3.4	11	
174	Effects of ageing at 673 K on the compressive behaviour of <110> oriented (Soft) NiAl single crystals and polycrystals with and without Ti additions. <i>Intermetallics</i> , 1996 , 4, 143-158	3.5	11	

173	Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. <i>ACS Applied Materials & Description</i> , 12, 42485-42498	9.5	11
172	Nanostructured polymeric yolk@hell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016 , 4, 9850-9857	13	11
171	Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11707-11713	7.1	11
170	Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. <i>Electrochimica Acta</i> , 2021 , 389, 138717	6.7	11
169	Boron nitride nanotube-based amphiphilic hybrid nanomaterials for superior encapsulation of hydrophobic cargos. <i>Materials Today Chemistry</i> , 2017 , 6, 45-50	6.2	10
168	Interfacial Engineering with Liquid Metal for Si-Based Hybrid Electrodes in Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5147-5152	6.1	10
167	Nanostructured BN-Mg composites: features of interface bonding and mechanical properties. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 965-9	3.6	10
166	Thin-walled BIIN ternary microtubes: from synthesis to electrical, cathodoluminescence and field-emission properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8134		10
165	Growth of single-crystal Ca10(Pt4As8)(Fe(1.8)Pt(0.2)As2)5 nanowhiskers with superconductivity up to 33 K. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4068-71	16.4	10
164	Intercrystalline distal-effect on the afterglow phenomenon in photoluminescent SrAl2O4:CeIII, Ln nanotube growth. <i>Nanotechnology</i> , 2010 , 21, 325707	3.4	10
163	The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects. <i>Nanotechnology</i> , 2009 , 20, 405707	3.4	10
162	Crystallography and elasticity of individual GaN nanotubes. <i>Nanotechnology</i> , 2009 , 20, 185705	3.4	10
161	Silicon multi-branch nanostructures for decent field emission and excellent electrical transport. <i>Nanotechnology</i> , 2011 , 22, 145705	3.4	10
160	Ion irradiation of multi-walled boron nitride nanotubes. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2010 , 7, NA-NA		10
159	Mg2Zn11MgO belt-like nanocables. <i>Chemical Physics Letters</i> , 2003 , 375, 102-105	2.5	10
158	Highly dispersed secondary building unit-stabilized binary metal center on a hierarchical porous carbon matrix for enhanced oxygen evolution reaction. <i>Nanoscale</i> , 2021 , 13, 1213-1219	7.7	10
157	A facile, environmentally friendly synthesis of strong photo-emissive methylammonium lead bromide perovskite nanocrystals enabled by ionic liquids. <i>Green Chemistry</i> , 2020 , 22, 3433-3440	10	9
156	Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge. <i>Journal of Nanophotonics</i> , 2016 , 10, 012520	1.1	9

(2007-2013)

155	Weak morphology dependent valence band structure of boron nitride. <i>Journal of Applied Physics</i> , 2013 , 114, 054306	2.5	9
154	Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes. <i>Journal of Applied Physics</i> , 2015 , 118, 234307	2.5	9
153	Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties. <i>Nanotechnology</i> , 2010 , 21, 115705	3.4	9
152	Transformation of ionic liquid into carbon nanotubes in confined nanospace. <i>Chemical Communications</i> , 2011 , 47, 10368-70	5.8	9
151	Compressive flow stress of a binary stoichiometric Ni3Al single crystal. <i>Scripta Materialia</i> , 1997 , 37, 17	77 ₅ 16782	2 9
150	Mg3N2-Ga: Nanoscale SemiconductorDiquid Metal Heterojunctions inside Graphitic Carbon Nanotubes. <i>Advanced Materials</i> , 2007 , 19, 1342-1346	24	9
149	Magnetic nanocablesBilicon carbide sheathed with iron-oxide-doped amorphous silica. <i>Applied Physics Letters</i> , 2006 , 88, 043105	3.4	9
148	Facile nanocoating method: From B-doped to BN-coated one-dimensional nanostructures. <i>Applied Physics Letters</i> , 2004 , 85, 106-108	3.4	9
147	Enhanced Li-Ion-Storage Performance of MoS2 through Multistage Structural Design. <i>ChemElectroChem</i> , 2019 , 6, 1475-1484	4.3	9
146	Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy. <i>Nano Letters</i> , 2018 , 18, 7238-7246	11.5	9
145	Microporous materials formed via intercalation of ultrathin coordination polymers in a layered silicate. <i>Nano Energy</i> , 2019 , 59, 162-168	17.1	8
144	Manganese Doping in Cobalt Oxide Nanorods Promotes Catalytic Dehydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5734-5741	8.3	8
143	Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 757-762	3.1	8
142	Mechanical properties of decellularized extracellular matrix coated with TiCaPCON film. <i>Biomedical Materials (Bristol)</i> , 2017 , 12, 035014	3.5	8
141	Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. <i>Journal of Applied Physics</i> , 2009 , 106, 034302	2.5	8
140	Role of Dimethyl Sulfoxide in the Hydrolytic Peeling of Boron Nitride Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15565-15568	3.8	8
139	Heteroepitaxial Growth of ZnO Nanorod Arrays on GaAs (111) Substrates by Electrochemical Deposition. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4339-4343	2.3	8
138	Photoinduced charge injection and bandgap-engineering of high-specific-surface-area BN nanotubes using a zinc phthalocyanine monolayer. <i>Small</i> , 2007 , 3, 1330-5	11	8

137	Single-Crystal Nanotubes of II3№2 Semiconductors. <i>Angewandte Chemie</i> , 2006 , 118, 7730-7734	3.6	8
136	In situ electrical measurements and manipulation of B/N-doped C nanotubes in a high-resolution transmission electron microscope. <i>Journal of Electron Microscopy</i> , 2003 , 52, 111-7		8
135	The tubular conical helix of graphitic boron nitride. New Journal of Physics, 2003, 5, 118-118	2.9	8
134	Nanotubes of Magnesium Borate. <i>Angewandte Chemie</i> , 2003 , 115, 1880-1882	3.6	8
133	In situ growth of Indium nanocrystals on InP nanorods mediated by electron beam of transmission electron microscope. <i>Chemical Physics Letters</i> , 2005 , 416, 321-326	2.5	8
132	Effects of strain-rate and ageing at 573 and 973 K on the mechanical (compressive) behaviour of <110> oriented (Boft) NiAl single crystals with and without microalloying additions of Ti, Zr, and Hf. II. <i>Intermetallics</i> , 1996 , 4, 253-271	3.5	8
131	Facile Hydrothermal Synthesis, Field Emission and Electrochemical Properties of V2O5 and EAgVO3 Nanobelts. <i>Science of Advanced Materials</i> , 2010 , 2, 407-412	2.3	8
130	Unveiling the Working Mechanism of Graphene Bubble Film/Silicon Composite Anodes in Li-Ion Batteries: From Experiment to Modeling. <i>ACS Applied Energy Materials</i> , 2020 , 3, 521-531	6.1	8
129	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration <i>Science</i> , 2021 , 374, 1616-1620	33.3	8
128	Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by in Situ Transmission Electron Microscopy. <i>Nano Letters</i> , 2019 , 19, 2084-2091	11.5	7
127	Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5086-5091	6.4	7
126	Transmission electron microscope as an ultimate tool for nanomaterial property studies. <i>Microscopy (Oxford, England)</i> , 2013 , 62, 157-75	1.3	7
125	Preparation and field-emission of TaSe2 nanobelt quasi-arrays, and electrical transport of its individual nanobelt. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 10123-9	1.3	7
124	Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes. <i>Physical Review B</i> , 2011 , 84,	3.3	7
123	Single-crystal MgS nanotubes: synthesis and properties. <i>CrystEngComm</i> , 2010 , 12, 1286-1289	3.3	7
122	Uniform, thin and continuous graphitic carbon tubular coatings on CdS nanowires. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1093		7
121	Chemical Peeling and Branching of Boron Nitride Nanotubes in Dimethyl Sulfoxide. <i>Angewandte Chemie</i> , 2006 , 118, 2098-2101	3.6	7
120	Novel unconventional inorganic nanowires: fabrication, structural analysis and electrical property evaluation. <i>Applied Physics A: Materials Science and Processing</i> , 2006 , 85, 265-270	2.6	7

119	The effect of manganese on magnetic properties and atomic and electronic structure of NiAl intermetallic compounds. <i>Intermetallics</i> , 1994 , 2, 147-153	3.5	7
118	Galvanic replacement of liquid metal Galinstan with copper for the formation of photocatalytically active nanomaterials. <i>New Journal of Chemistry</i> , 2020 , 44, 14979-14988	3.6	7
117	Biodegradable and Peroxidase-Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. <i>Advanced Science</i> , 2021 , 8, e2101184	13.6	7
116	AllBN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verification. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 875-880	5.7	7
115	Gold-Loaded Nanoporous Iron Oxide Cubes Derived from Prussian Blue as Carbon Monoxide Oxidation Catalyst at Room Temperature. <i>ChemistrySelect</i> , 2018 , 3, 13464-13469	1.8	7
114	Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculations. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 1725-1730	1.3	6
113	Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope. <i>Applied Physics Letters</i> , 2015 , 107, 091103	3.4	6
112	Enriched pseudocapacitive lithium storage in electrochemically activated carbonaceous vanadium(IV, V) oxide hydrate. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13183-13196	13	6
111	Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. <i>Ultramicroscopy</i> , 2018 , 194, 108-116	3.1	6
110	Photodetectors: Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors (Adv. Mater. 48/2015). <i>Advanced Materials</i> , 2015 , 27, 8119-8119	24	6
109	Facile and Mild Strategy Toward Biopolymer-Coated Boron Nitride Nanotubes via a Glycine-Assisted Interfacial Process. <i>Journal of Physical Chemistry C</i> , 2013 , 130911093342002	3.8	6
108	Triangular ZnO nanosheets: synthesis, crystallography and cathodoluminescence. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 5744-9	1.3	6
107	Spatially resolved cathodoluminescence of individual BN-coated CaS:Eu nanowires. <i>Nanoscale</i> , 2011 , 3, 598-602	7.7	6
106	Ferromagnetic [email[protected] Nanopeapods with Protecting BN Tubular Sheaths. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14818-14822	3.8	6
105	Synthesis and photoluminescence of amorphous silicon nitride/silica coaxial nanotubes. <i>Chemical Physics Letters</i> , 2004 , 393, 128-131	2.5	6
104	Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes. <i>Angewandte Chemie</i> , 2003 , 115, 3617-3621	3.6	6
103	In situ cyclic telescoping of multi-walled carbon nanotubes in a transmission electron microscope. <i>Carbon</i> , 2016 , 107, 225-232	10.4	6
102	Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. <i>Journal of Materiomics</i> , 2021 , 7, 219-225	6.7	6

101	The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. <i>Materials and Design</i> , 2021 , 199, 109403	8.1	6
100	Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 394, 139139	6.7	6
99	Nanometer-scale mapping of defect-induced luminescence centers in cadmium sulfide nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 111904	3.4	5
98	Effect of Fe3+ for Ru4+ substitution in disordered Na1.33Ru0.67O2 cathode for sodium-ion batteries: Structural and electrochemical characterizations. <i>Electrochimica Acta</i> , 2019 , 325, 134926	6.7	5
97	Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope. <i>Nanoscale</i> , 2018 , 10, 8099-8105	7.7	5
96	Functionalization of boron nitride nanotubes for applications in nanobiomedicine 2016 , 17-40		5
95	Inorganically filled carbon nanotubes: Synthesis and properties. <i>Pure and Applied Chemistry</i> , 2010 , 82, 2097-2109	2.1	5
94	Silica Fibers with Triangular Cross Sections. <i>Advanced Materials</i> , 2006 , 18, 1852-1856	24	5
93	Irreversible pressure-induced transformation of boron nitride nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 1810-4	1.3	5
92	Fabrication of MetalBemiconductor Nanowire Heterojunctions. <i>Angewandte Chemie</i> , 2005 , 117, 2178-2	1826	5
91	Structure and yield strength of directionally solidified Ni3Al intermetallic premelted with MoSi2 phase. <i>Intermetallics</i> , 1999 , 7, 109-114	3.5	5
90	Multi-and Single-Walled Boron Nitride Nanotubes Produced from Carbon Nanotubes by a Substitution Reaction. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 593, 27		5
89	Polyol Synthesis of Ag/BN Nanohybrids and their Catalytic Stability in CO Oxidation Reaction. <i>ChemCatChem</i> , 2020 , 12, 1691-1698	5.2	5
88	Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery. <i>Sustainable Materials and Technologies</i> , 2020 , 26, e00230	5.3	5
87	Crystallography-derived optoelectronic and photovoltaic properties of CsPbBr3 perovskite single crystals as revealed by in situ transmission electron microscopy. <i>Applied Materials Today</i> , 2020 , 20, 100	788 ⁶	5
86	Theoretical aspects of WSIhanotube chemical unzipping. <i>Nanoscale</i> , 2014 , 6, 8400-4	7.7	4
85	Length fractionation of boron nitride nanotubes using creamed oil-in-water emulsions. <i>Langmuir</i> , 2014 , 30, 1735-40	4	4
84	Fabrication, characterization, cathodoluminescence, and field-emission properties of silica (SiO2) nanostructures. <i>Materials Characterization</i> , 2012 , 73, 81-88	3.9	4

(2021-2011)

83	Electron-beam induced electric-hydraulic expansion in a silica-shelled gallium microball-nanotube structure. <i>Applied Physics Letters</i> , 2011 , 99, 083112	3.4	4	
82	Effect of Electron Beam Irradiation and Heating on the Structural Stability of Sulphide-Filled Carbon Nanotubes. <i>Microscopy and Microanalysis</i> , 2012 , 18, 77-78	0.5	4	
81	High-pressure effects on boron nitride multi-walled nanotubes: An X-ray diffraction study. <i>Chemical Physics Letters</i> , 2008 , 466, 205-208	2.5	4	
80	Efficient lithium-ion storage using a heterostructured porous carbon framework and its transmission electron microscopy study <i>Chemical Communications</i> , 2021 ,	5.8	4	
79	Hexagonal BN- and BNO-supported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions. <i>Applied Catalysis B: Environmental</i> , 2021 , 120891	21.8	4	
78	Elevated-temperature high-strength h-BN-doped Al2014 and Al7075 composites: Experimental and theoretical insights. <i>Materials Science & Discourse ing A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 809, 140969	5.3	4	
77	Boron nitride nanotubes as drug carriers 2016 , 79-94		4	
76	Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation. <i>Catalysis Science and Technology</i> , 2019 , 9, 6460-6470	5.5	4	
75	Diameter, strength and resistance tuning of double-walled carbon nanotubes in a transmission electron microscope. <i>Carbon</i> , 2020 , 160, 98-106	10.4	3	
74	Electrical Characteristics: High P erformance Solar-Blind Deep Ultraviolet Photodetector Based on Individual Single-Crystalline Zn2GeO4 Nanowire (Adv. Funct. Mater. 5/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 804-804	15.6	3	
73	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by Transmission Electron Microscopy. <i>Nano Letters</i> , 2019 , 19, 4974-4980	11.5	3	
72	Cubic lattice nanosheets: thickness-driven light emission. ACS Nano, 2014, 8, 6516-9	16.7	3	
71	Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM. <i>Nanotechnology</i> , 2015 , 26, 465705	3.4	3	
70	Origin of Coproduced Boron Nitride and Carbon Helical Conical Fibers. <i>Crystal Growth and Design</i> , 2011 , 11, 3141-3148	3.5	3	
69	Synthesis of BN Nanotubes in a Laser Heated DAC <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 1998 , 7, 1057-1059	O	3	
68	Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope. <i>Nano Letters</i> , 2020 , 20, 2279-2287	11.5	3	
67	Structure and Superelasticity of Novel Zr-Rich Ti-ZrNb Shape Memory Alloys. <i>Shape Memory and Superelasticity</i> , 2021 , 7, 304-313	2.8	3	
66	Stable single atomic silver wires assembling into a circuitry-connectable nanoarray. <i>Nature Communications</i> , 2021 , 12, 1191	17.4	3	

65	Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights. <i>Journal of Catalysis</i> , 2021 , 402, 130-142	7.3	3
64	Ultra-stable sodium ion storage of biomass porous carbon derived from sugarcane. <i>Chemical Engineering Journal</i> , 2022 , 136344	14.7	3
63	Graphene Ingestion and Regrowth on "Carbon-Starved" Metal Electrodes. ACS Nano, 2017, 11, 10575-1	0 58 27	2
62	Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by in situ transmission electron microscopy. <i>Nanoscale Advances</i> , 2019 , 1, 1784-1790	5.1	2
61	Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. <i>Sustainable Materials and Technologies</i> , 2020 , 25, e00181	5.3	2
60	Dually-functionalized boron nitride nanotubes to target glioblastoma multiforme. <i>Materials Today Chemistry</i> , 2020 , 16, 100270	6.2	2
59	Functional boron nitride nanotubes 2010 ,		2
58	Fabrication of core/shell Ge/SiO2 and Ge/CdS nanospheres. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 572-6	1.3	2
57	Effects of stoichiometry, microalloying and aging heat treatments on the compressive behavior of NiAl alloys. <i>Scripta Materialia</i> , 1997 , 36, 1461-1466	5.6	2
56	Hollow and Polygonous Microtubes of Monocrystalline Indium Germanate. <i>Angewandte Chemie</i> , 2006 , 118, 234-237	3.6	2
55	Synthesis and microstructure of Cd4SiS6/Si composite nanowires. <i>Journal of Electron Microscopy</i> , 2005 , 54, 485-91		2
54	Corrigendum to Bynthesis of carbon nanotubes below room temperature[]Carbon, 2001 , 39, 787	10.4	2
53	Open nanotubes of insulating boron nitride. AIP Conference Proceedings, 2001,	О	2
52	Tunable Mechanical and Electrical Properties of Coaxial BN-C Nanotubes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800576	2.5	2
51	Back-Integration of Recovered Graphite from Waste-Batteries as Ultra-High Capacity and Stable Anode for Potassium-Ion Battery. <i>Batteries and Supercaps</i> , 2022 , 5,	5.6	2
50	Interface engineering of bio-inspired Boron nitride nano-architectures toward controllable hydrophobicity/hydrophilicity 2015 ,		1
49	Photodetectors: Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS-ZnO Heterostructure Nanofilms (Adv. Mater. 19/2014). <i>Advanced Materials</i> , 2014 , 26, 3087-3087	24	1
48	FORMATION OF NANOCLUSTERS IN EXPANDING LASER PLUME. <i>International Journal of Nanoscience</i> , 2010 , 09, 371-375	0.6	1

47	Laser Heating of Boron Nitride and Graphite in a Diamond Anvil Cell. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 499, 321		1
46	IN-SITU TEM OF FILLED NANOTUBES: HEATING, ELECTRON IRRADIATION, ELECTRICAL AND MECHANICAL PROBING 2008 , 187-227		1
45	In-situ TEM electrical and mechanical properties measurements of one-dimensional inorganic nanomaterials 2008 ,		1
44	Twinning in ultrathin silicon nanowires. International Journal of Materials Research, 2006, 97, 513-516	0.5	1
43	Boron Nitride Nanotube, Nanocable and Nanocone. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 706, 1		1
42	Metal-Filled Boron Nitride Nanotubes. AIP Conference Proceedings, 2002,	О	1
41	Optomechanical Properties of MoSe Nanosheets as Revealed by Transmission Electron Microscopy <i>Nano Letters</i> , 2022 ,	11.5	1
40	In Situ TEM Electrical and Mechanical Probing of Individual Multi-walled Boron Nitride Nanotubes. <i>Topics in Applied Physics</i> , 2010 , 275-286	0.5	1
39	Nanoboron Nitrides 2015 , 3-32		1
38	Na0.67Mn(1-x)FexO2 Compounds as High-Capacity Cathode Materials for Rechargeable Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2021 , 8, 508-516	4.3	1
37	Exploring Aluminum-Ion Insertion into Magnesium-Doped Manjiroite (MnO2) Nanorods in Aqueous Solution. <i>ChemElectroChem</i> , 2021 , 8, 1048-1054	4.3	1
36	Electron Microscopy of Boron Nitride Nanotubes 2003 , 221-250		1
35	Sonochemical Synthesis of Ga/ZnO Nanomaterials from a Liquid Metal for Photocatalytic Applications. <i>Advanced Sustainable Systems</i> ,2100312	5.9	0
34	Development of thermoelectric thin films and characterization methods. <i>Journal of Physics: Conference Series</i> , 2019 , 1407, 012055	0.3	O
33	Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. <i>Advanced Materials Technologies</i> ,2100505	6.8	0
32	Zero-emission multivalorization of light alcohols with self-separable pure H2 fuel. <i>Applied Catalysis B: Environmental</i> , 2021 , 292, 120212	21.8	O
31	In situ TEM measurements of mechanical properties of individual spherical BN nanoparticles of different morphologies 2016 , 45-46		
30	Kinking effects and transport properties of coaxial BN-C nanotubes as revealed by in situ transmission electron microscopy and theoretical analysis. <i>APL Materials</i> , 2019 , 7, 101118	5.7	

29	Cathodoluminescence Mapping of Defect Regions in Cadmium Sulfide Nanowires. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1696-1697	0.5
28	Dispersion and Functionalization of Boron Nitride Nanotubes in Aqueous Solution. <i>Nippon Gomu Kyokaishi</i> , 2015 , 88, 447-453	0
27	Solar Cells: Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells (Part. Part. Syst. Charact. 7/2014). <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 716-716	3.1
26	One-Dimensional Inorganic Nanostructures for Field Emitters 2013 , 483-501	
25	Nanowires: Bandgap-Graded CdSxSe1⊠ Nanowires for High-Performance Field-Effect Transistors and Solar Cells (Adv. Mater. 8/2013). <i>Advanced Materials</i> , 2013 , 25, 1082-1082	24
24	Heterogeneous Nanotubes: (X*CNTs, X*BNNTs) 2011 , 323-409	
23	Nanotubes: Tube-in-Tube TiO2 Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties (Small 4/2011). <i>Small</i> , 2011 , 7, 444-444	11
22	Mechanics of Turbostratic Carbon Nanotubes Filled with Ga-Doped ZnS. <i>Materials Science Forum</i> , 2010 , 636-637, 665-670	0.4
21	Synthesis and Property of Nanostructured ZnS. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1158-1159	0.5
20	Synthesis and Property of BN Nanotubes and Nanosheetes. <i>Hyomen Kagaku</i> , 2012 , 33, 569-574	
19	First in-situ TEM Studies of Young Modulus and Elastic Properties of individual and bundled Single-Walled BN nanotubes. <i>Microscopy and Microanalysis</i> , 2012 , 18, 750-751	0.5
18	In situ TEM measurements of nanotube and nanosheet properties. <i>Microscopy and Microanalysis</i> , 2012 , 18, 1542-1543	0.5
17	Electrical and mechanical probing of nanostructures with transmission electron microscopy. <i>Microscopy and Microanalysis</i> , 2009 , 15, 47-48	0.5
16		
10	Silica-Shielded Ga-ZnS Metal-Semiconductor Nanowire Heterojunctions. <i>Microscopy and Microanalysis</i> , 2006 , 12, 478-479	0.5
15	•	0.5
	Microanalysis, 2006, 12, 478-479 Novel Synthesis and Functionalization of Boron Nitride Nanotubes. Microscopy and Microanalysis,	
15	Microanalysis, 2006, 12, 478-479 Novel Synthesis and Functionalization of Boron Nitride Nanotubes. Microscopy and Microanalysis, 2006, 12, 496-497	0.5

LIST OF PUBLICATIONS

11	Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes. Journal of Polymer Science, 2022 , 60, 233	2.4
10	Synthesis, Analysis, Transport and Field emission Measurements of Compound B-C-N Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 772, 761	
9	Structure and composition analysis of nanotubes and ceramics by a new 300 kV energy-filtered FEGTEM 2018 , 83-90	
8	Anodic Alumina Membrane Template and Its Derivative Membrane Nanostructures 2012 , 109-143	
7	Nanocolumnar Arrays by Pulsed Laser Deposition on Polystyrene Colloid Spheres 2012 , 145-166	
6	Seed-Assisted Growth of One-Dimensional Nanostructures 2012 , 1-36	
5	In Situ TEM Investigations of the Interface Behavior Between Carbon Nanotubes and Metals 2012 , 34.	5-374
4	One-Dimensional Inorganic Semiconductor Nanostructures 2012 , 37-70	
3	Surface Phonon Coupling within Boron Nitride Nanotubes Resolved by a Novel Near-Field Infrared Pump-Probe Imaging Technique <i>Microscopy and Microanalysis</i> , 2016 , 22, 366-367	0.5
2	Development of Nanoscale Thermocouple Probes for Local Thermal Measurements. <i>E-Journal of Surface Science and Nanotechnology</i> , 2019 , 17, 102-107	0.7
1	Exploring Aluminum-Ion Insertion into Magnesium-Doped Manjiroite (MnO2) Nanorods in Aqueous Solution. <i>ChemElectroChem</i> , 2021 , 8, 995-995	4-3