Monica Di Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281610/publications.pdf

Version: 2024-02-01

19636 43868 10,233 182 61 91 citations h-index g-index papers 190 190 190 11518 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Critical Interaction between NR2B and MAGUK in L-DOPA Induced Dyskinesia. Journal of Neuroscience, 2006, 26, 2914-2922.	1.7	243
2	Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of L-DOPA-induced dyskinesia. Brain, 2008, 131, 3380-3394.	3.7	223
3	Mutation within <i>TARDBP</i> leads to Frontotemporal Dementia without motor neuron disease. Human Mutation, 2009, 30, E974-E983.	1.1	220
4	\hat{l}_{\pm} -Secretase ADAM10 as Well as \hat{l}_{\pm} APPs Is Reduced in Platelets and CSF of Alzheimer Disease Patients. Molecular Medicine, 2002, 8, 67-74.	1.9	215
5	Regulation of Dopamine D1 Receptor Trafficking and Desensitization by Oligomerization with Glutamate N-Methyl-D-aspartate Receptors. Journal of Biological Chemistry, 2003, 278, 20196-20202.	1.6	200
6	Management of Glaucoma: Focus on Pharmacological Therapy. Drugs and Aging, 2005, 22, 1-21.	1.3	166
7	Calcium/Calmodulinâ€Dependent Protein Kinase II Is Associated with NR2A/B Subunits of NMDA Receptor in Postsynaptic Densities. Journal of Neurochemistry, 1998, 71, 1733-1741.	2.1	165
8	Synapse-Associated Protein-97 Mediates Â-Secretase ADAM10 Trafficking and Promotes Its Activity. Journal of Neuroscience, 2007, 27, 1682-1691.	1.7	164
9	Hippocampal Synaptic Plasticity Involves Competition between Ca ²⁺ /Calmodulin-Dependent Protein Kinase II and Postsynaptic Density 95 for Binding to the NR2A Subunit of the NMDA Receptor. Journal of Neuroscience, 2001, 21, 1501-1509.	1.7	162
10	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	1.7	155
11	Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease, 2013, 52, 229-236.	2.1	155
12	Differential Level of Platelet Amyloid beta Precursor Protein Isoforms: An Early Marker for Alzheimer Disease. Archives of Neurology, 1998, 55, 1195-1200.	4.9	146
13	Analytical performance and clinical utility of the INNOTEST® PHOSPHO-TAU(181P) assay for discrimination between Alzheimer's disease and dementia with Lewy bodies. Clinical Chemistry and Laboratory Medicine, 2006, 44, 1472-80.	1.4	145
14	Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiology of Aging, 2006, 27, 24-31.	1.5	139
15	Abnormal Ca2+-Calmodulin-Dependent Protein Kinase II Function Mediates Synaptic and Motor Deficits in Experimental Parkinsonism. Journal of Neuroscience, 2004, 24, 5283-5291.	1.7	136
16	New targets for pharmacological intervention in the glutamatergic synapse. European Journal of Pharmacology, 2006, 545, 2-10.	1.7	136
17	Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Human Molecular Genetics, 2000, 9, 47-56.	1.4	129
18	Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. Journal of Neurochemistry, 2004, 90, 1489-1499.	2.1	129

#	Article	IF	Citations
19	Synaptic Activity Controls Dendritic Spine Morphology by Modulating eEF2-Dependent BDNF Synthesis. Journal of Neuroscience, 2010, 30, 5830-5842.	1.7	128
20	Decreased NR2B Subunit Synaptic Levels Cause Impaired Long-Term Potentiation But Not Long-Term Depression. Journal of Neuroscience, 2009, 29, 669-677.	1.7	126
21	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	3.7	124
22	Evidence of White Matter Changes on Diffusion Tensor Imaging in Frontotemporal Dementia. Archives of Neurology, 2007, 64, 246.	4.9	123
23	Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiological Reviews, 1997, 77, 199-215.	13.1	116
24	Neonatal Exposure to Brominated Flame Retardant BDE-47 Reduces Long-Term Potentiation and Postsynaptic Protein Levels in Mouse Hippocampus. Environmental Health Perspectives, 2007, 115, 865-870.	2.8	115
25	Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. Journal of Neurochemistry, 2002, 80, 438-447.	2.1	112
26	Interleukin- $1\hat{l}^2$ Released by gp120 Drives Neural Death through Tyrosine Phosphorylation and Trafficking of NMDA Receptors. Journal of Biological Chemistry, 2006, 281, 30212-30222.	1.6	107
27	Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin- $\hat{1}^2$ and NMDA stimulation. Journal of Neuroinflammation, 2011, 8, 14.	3.1	106
28	Prenatal Methylazoxymethanol Treatment in Rats Produces Brain Abnormalities with Morphological Similarities to Human Developmental Brain Dysgeneses. Journal of Neuropathology and Experimental Neurology, 1999, 58, 92-106.	0.9	104
29	Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiology of Disease, 2004, 16, 454-460.	2.1	103
30	Synaptic Localization and Activity of ADAM10 Regulate Excitatory Synapses through N-Cadherin Cleavage. Journal of Neuroscience, 2010, 30, 16343-16355.	1.7	102
31	αCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Letters, 1999, 456, 394-398.	1.3	101
32	Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology, 2008, 71, 1796-1803.	1.5	101
33	NMDA receptor subunits are modified transcriptionally and post-translationally in the brain of streptozotocin-diabetic rats. Diabetologia, 1999, 42, 693-701.	2.9	100
34	Protein Kinase C Activation Modulates α-Calmodulin Kinase II Binding to NR2A Subunit of N-Methyl-D-Aspartate Receptor Complex. Journal of Biological Chemistry, 2001, 276, 7609-7613.	1.6	98
35	Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer's disease. Journal of Clinical Investigation, 2013, 123, 2523-2538.	3.9	96
36	CaMKII-dependent Phosphorylation Regulates SAP97/NR2A Interaction. Journal of Biological Chemistry, 2003, 278, 44745-44752.	1.6	95

3

#	Article	IF	Citations
37	Synaptic Dysfunction in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2012, 970, 573-601.	0.8	94
38	Abnormalities in the Pattern of Platelet Amyloid Precursor Protein Forms in Patients With Mild Cognitive Impairment and Alzheimer Disease. Archives of Neurology, 2002, 59, 71.	4.9	92
39	Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity. Neurobiology of Disease, 2011, 43, 507-515.	2.1	91
40	[alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Molecular Medicine, 2002, 8, 67-74.	1.9	88
41	Brain Magnetic Resonance Imaging Structural Changes in a Pedigree of Asymptomatic Progranulin Mutation Carriers. Rejuvenation Research, 2008, 11, 585-595.	0.9	87
42	Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiology of Aging, 2009, 30, 34-40.	1.5	85
43	Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Experimental Neurology, 2004, 189, 162-172.	2.0	84
44	Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Frontiers in Cellular Neuroscience, 2014, 8, 35.	1.8	84
45	Calcium-calmodulin-dependent protein kinaseâ€fII phosphorylation modulates PSD-95 binding to NMDA receptors. European Journal of Neuroscience, 2006, 24, 2694-2704.	1.2	82
46	Calcium/Calmodulin-dependent Protein Kinase II Phosphorylation Drives Synapse-associated Protein 97 into Spines. Journal of Biological Chemistry, 2004, 279, 23813-23821.	1.6	81
47	Abnormal Pattern of Platelet APP Isoforms in Alzheimer Disease and Down Syndrome. Archives of Neurology, 1996, 53, 1162-1166.	4.9	80
48	Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer Disease: from risk factors to disease modulators. Neurobiology of Aging, 2004, 25, 747-751.	1.5	78
49	Blood cell markers in Alzheimer Disease: Amyloid Precursor Protein form ratio in platelets. Experimental Gerontology, 2010, 45, 53-56.	1.2	76
50	Amyloid Precursor Protein in Platelets of Patients With Alzheimer Disease. Archives of Neurology, 2001, 58, 442-6.	4.9	75
51	Platelets as a peripheral district where to study pathogenetic mechanisms of Alzheimer disease: the case of amyloid precursor protein. European Journal of Pharmacology, 2000, 405, 277-283.	1.7	74
52	Genetic correlates of behavioral endophenotypes in Alzheimer disease: Role of COMT, 5-HTTLPR and APOE polymorphisms. Neurobiology of Aging, 2006, 27, 1595-1603.	1.5	73
53	Blocking ADAM10 synaptic trafficking generates a model of sporadic Alzheimer's disease. Brain, 2010, 133, 3323-3335.	3.7	71
54	Altered connections between neocortical and heterotopic areas in methylazoxymethanol-treated rat. Epilepsy Research, 1998, 32, 49-62.	0.8	69

#	Article	IF	Citations
55	Role of BDNF Val66Met functional polymorphism in Alzheimer's disease-related depression. Neurobiology of Aging, 2009, 30, 1406-1412.	1.5	69
56	Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. International Journal of Molecular Sciences, 2020, 21, 1538.	1.8	69
57	Hippocampal Synaptic Plasticity, Memory, and Epilepsy: Effects of Long-Term Valproic Acid Treatment. Biological Psychiatry, 2010, 67, 567-574.	0.7	68
58	NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Frontiers in Cellular Neuroscience, 2015, 9, 245.	1.8	68
59	Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. Journal of Neurochemistry, 2007, 100, 1032-1046.	2.1	67
60	Longâ€lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity. Involvement of the NMDA receptor complex. FASEB Journal, 2003, 17, 1-22.	0.2	66
61	Dysplastic neocortex and subcortical heterotopias in methylazoxymethanol-treated rats: an intracellular study of identified pyramidal neurones. Neuroscience Letters, 1998, 246, 181-185.	1.0	64
62	Postsynaptic density–membrane associated guanylate kinase proteins (PSD–MAGUKs) and their role in CNS disorders. Neuroscience, 2009, 158, 324-333.	1.1	64
63	microRNA 221 Targets ADAM10 mRNA and is Downregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 61, 113-123.	1.2	64
64	Platelet Amyloid Precursor Protein Abnormalities in Mild Cognitive Impairment Predict Conversion to Dementia of Alzheimer Type. Archives of Neurology, 2003, 60, 1740.	4.9	63
65	NR2B Subunit Exerts a Critical Role in Postischemic Synaptic Plasticity. Stroke, 2006, 37, 1895-1901.	1.0	63
66	Progranulin genetic variations in frontotemporal lobar degeneration: evidence for low mutation frequency in an Italian clinical series. Neurogenetics, 2008, 9, 197-205.	0.7	63
67	Cholinesterase inhibitors influence APP metabolism in Alzheimer disease patients. Neurobiology of Disease, 2005, 19, 237-242.	2.1	60
68	Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiology of Aging, 2012, 33, 2138-2144.	1.5	60
69	Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nature Communications, 2015, 6, 10181.	5.8	59
70	Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome. Neuron, 2015, 87, 382-398.	3.8	59
71	BDNF Genetic Variations Increase the Risk of Alzheimer's Disease-Related Depression. Journal of Alzheimer's Disease, 2009, 18, 867-875.	1.2	56
72	Selective in vitro blockade of neuroepithelial cells proliferation by methylazoxymethanol, a molecule capable of inducing long lasting functional impairments. Journal of Neuroscience Research, 1995, 41, 640-647.	1.3	55

#	Article	IF	CITATIONS
73	Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer Disease. Neuroscience Letters, 2004, 370, 127-129.	1.0	55
74	An Arginine Stretch Limits ADAM10 Exit from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2010, 285, 10376-10384.	1.6	53
75	Amyloid flirting with synaptic failure: Towards a comprehensive view of Alzheimer's disease pathogenesis. European Journal of Pharmacology, 2008, 585, 109-118.	1.7	52
76	ADAM10 in Alzheimer's disease: Pharmacological modulation by natural compounds and its role as a peripheral marker. Biomedicine and Pharmacotherapy, 2019, 113, 108661.	2.5	52
77	ApoE genotype influences the biological effect of donepezil on APP metabolism in Alzheimer disease: evidence from a peripheral model. European Neuropsychopharmacology, 2002, 12, 195-200.	0.3	51
78	NMDA Receptor Composition Differs Among Anatomically Diverse Malformations of Cortical Development. Journal of Neuropathology and Experimental Neurology, 2006, 65, 883-893.	0.9	48
79	Increased Secretion of the Amino-Terminal Fragment of Amyloid Precursor Protein in Brains of Rats with a Constitutive Up-Regulation of Protein Kinase C. Journal of Neurochemistry, 2002, 68, 2523-2529.	2.1	47
80	Predicting Alzheimer dementia in mild cognitive impairment patients. European Journal of Pharmacology, 2006, 545, 73-80.	1.7	47
81	Zinc transporterâ€1: a novel <scp>NMDA</scp> receptorâ€binding protein at the postsynaptic density. Journal of Neurochemistry, 2015, 132, 159-168.	2.1	47
82	A light-gated potassium channel for sustained neuronal inhibition. Nature Methods, 2018, 15, 969-976.	9.0	47
83	SAP97-mediated local trafficking is altered in Alzheimer disease patients' hippocampus. Neurobiology of Aging, 2012, 33, 422.e1-422.e10.	1.5	46
84	The impaired long-term potentiation in the CA1 field of the hippocampus of cognitive deficient microencephalic rats is restored byd-serine. Neuroscience, 1993, 54, 49-60.	1.1	44
85	Searching for new animal models of Alzheimer′s disease. European Journal of Pharmacology, 2010, 626, 57-63.	1.7	44
86	Microvascular damage and platelet abnormalities in early Alzheimer's disease. Journal of the Neurological Sciences, 2002, 203-204, 189-193.	0.3	43
87	ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2017, 21, 1017-1026.	1.5	43
88	Lack of PSD-95 drives hippocampal neuronal cell death through activation of an $\hat{l}\pm CaMKII$ transduction pathway. European Journal of Neuroscience, 2002, 16, 777-786.	1.2	42
89	Assemblies of glutamate receptor subunits with post-synaptic density proteins and their alterations in Parkinson's disease. Progress in Brain Research, 2010, 183, 169-182.	0.9	41
90	SAP97 Directs the Localization of Kv4.2 to Spines in Hippocampal Neurons. Journal of Biological Chemistry, 2007, 282, 28691-28699.	1.6	40

#	Article	IF	Citations
91	Modeling Alzheimer's disease: from past to future. Frontiers in Pharmacology, 2013, 4, 77.	1.6	40
92	Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias. Neurobiology of Disease, 2017, 108, 54-64.	2.1	40
93	Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Experimental Neurology, 2011, 232, 240-250.	2.0	39
94	Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus. ELife, 2016, 5, e12430.	2.8	39
95	NMDA receptor subunits are phosphorylated by activation of neurotrophin receptors in PSD of rat spinal cord. NeuroReport, 2001, 12, 1301-1305.	0.6	38
96	N-Methyl-d-aspartate (NMDA) Receptor Composition Modulates Dendritic Spine Morphology in Striatal Medium Spiny Neurons. Journal of Biological Chemistry, 2012, 287, 18103-18114.	1.6	38
97	Neurogenesis in Cerebral Heterotopia Induced in Rats by Prenatal Methylazoxymethanol Treatment. Cerebral Cortex, 2003, 13, 736-748.	1.6	37
98	Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner. Brain, Behavior, and Immunity, 2014, 35, 135-143.	2.0	37
99	Cognitive Deficits Associated with Alteration of Synaptic Metaplasticity Precede Plaque Deposition in AÎ ² PP23 Transgenic Mice. Journal of Alzheimer's Disease, 2010, 21, 1367-1381.	1.2	35
100	Pre–clinical diagnosis of Alzheimer disease combining platelet amyloid precursor protein ratio and rCBF spect analysis. Journal of Neurology, 2005, 252, 1359-1362.	1.8	34
101	Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the αâ€aminoâ€3â€hydroxylâ€5â€methylâ€4â€isoxazoleâ€propionic acid receptor GluR2/3 subunit are associated in trafficking process. European Journal of Neuroscience, 2009, 29, 1951-1963.	n a.2 ommo	o n 34
102	Synapse-to-nucleus communication: from developmental disorders to Alzheimer's disease. Current Opinion in Neurobiology, 2018, 48, 160-166.	2.0	34
103	Peripheral Blood Abnormalities in Alzheimer Disease: Evidence for Early Endothelial Dysfunction. Alzheimer Disease and Associated Disorders, 2002, 16, 150-155.	0.6	33
104	Platelets provide human tissue to unravel pathogenic mechanisms of Alzheimer disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 763-770.	2.5	32
105	Combined Biomarkers for Early Alzheimer Disease Diagnosis. Current Medicinal Chemistry, 2007, 14, 1171-1178.	1.2	31
106	Linking NMDA Receptor Synaptic Retention to Synaptic Plasticity and Cognition. IScience, 2019, 19, 927-939.	1.9	31
107	αCaMKII and NMDA-Receptor Subunit Expression in Epileptogenic Cortex from Human Periventricular Nodular Heterotopia. Epilepsia, 2002, 43, 209-216.	2.6	30
108	The NMDA Receptor Complex Is Altered in an Animal Model of Human Cerebral Heterotopia. Journal of Neuropathology and Experimental Neurology, 2003, 62, 662-675.	0.9	30

#	Article	IF	CITATIONS
109	Artificial neural networks allow the use of simultaneous measurements of Alzheimer disease markers for early detection of the disease. Journal of Translational Medicine, 2005, 3, 30.	1.8	30
110	Molecular Rationale for the Pharmacological Treatment of Alzheimer??s Disease. Drugs and Aging, 2005, 22, 27???37.	1.3	30
111	Serum cholesterol levels modulate long-term efficacy of cholinesterase inhibitors in Alzheimer disease. Neuroscience Letters, 2003, 343, 213-215.	1.0	29
112	Cumulative Effect of COMT and 5-HTTLPR Polymorphisms and Their Interaction With Disease Severity and Comorbidities on the Risk of Psychosis in Alzheimer Disease. American Journal of Geriatric Psychiatry, 2006, 14, 343-351.	0.6	29
113	Consensus Document on European Brain Research. European Journal of Neuroscience, 2011, 33, 768-818.	1.2	29
114	The neuropeptide <u>PACAP38</u> induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. Journal of Cell Science, 2012, 125, 1401-6.	1.2	29
115	Coxsackievirus Adenovirus Receptor Loss Impairs Adult Neurogenesis, Synapse Content, and Hippocampus Plasticity. Journal of Neuroscience, 2016, 36, 9558-9571.	1.7	29
116	Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. Journal of Alzheimer's Disease, 2018, 62, 1113-1123.	1.2	29
117	Cyclase-associated protein 2 dimerization regulates cofilin in synaptic plasticity and Alzheimer's disease. Brain Communications, 2020, 2, fcaa086.	1.5	29
118	Establishing short-term prognosis in Frontotemporal Lobar Degeneration spectrum: Role of genetic background and clinical phenotype. Neurobiology of Aging, 2010, 31, 270-279.	1.5	28
119	Denervation and hyperinnervation in the nervous system of diabetic animals: III. Functional alterations of G proteins in diabetic encephalopathy. Journal of Neuroscience Research, 1989, 24, 517-523.	1.3	27
120	Targeting glutamatergic synapses in Parkinson's disease. Current Opinion in Pharmacology, 2015, 20, 24-28.	1.7	27
121	Synaptic dysfunction in early phases of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 417-438.	1.0	27
122	Adenosine modulates the dopaminergic function in the nigro-striatal system by interacting with striatal dopamine dependent adenylate cyclase. Pharmacological Research Communications, 1987, 19, 275-286.	0.2	26
123	Epilepsyâ€induced abnormal striatal plasticity in Bassoon mutant mice. European Journal of Neuroscience, 2009, 29, 1979-1993.	1.2	26
124	Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4375-84.	3.3	26
125	Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neuroscience, 2006, 7, 71.	0.8	25
126	Platelet amyloid precursor protein forms in AD: a peripheral diagnostic tool and a pharmacological target. Mechanisms of Ageing and Development, 2001, 122, 1997-2004.	2.2	24

#	Article	IF	CITATIONS
127	High cholesterol affects platelet APP processing in controls and in AD patients. Neurobiology of Aging, 2003, 24, 631-636.	1.5	24
128	Modulatory effect of acetyl-l-carnitine on amyloid precursor protein metabolism in hippocampal neurons. European Journal of Pharmacology, 2008, 597, 51-56.	1.7	24
129	ADAM10 in Synaptic Physiology and Pathology. Neurodegenerative Diseases, 2014, 13, 72-74.	0.8	24
130	NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiology of Disease, 2019, 121, 338-349.	2.1	24
131	Synaptic plasticity in the diabetic brain: advanced aging?. Progress in Brain Research, 2002, 138, 305-314.	0.9	23
132	Predicting Cognitive Decline in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2004, 18, 32-34.	0.6	23
133	Preliminary Evidence that VEGF Genetic Variability Confers Susceptibility to Frontotemporal Lobar Degeneration. Rejuvenation Research, 2008, 11, 773-780.	0.9	23
134	Levels of NGF, p75NGFR and ChAT immunoreactivity in brain of adult and aged microencephalic rats. Neurobiology of Aging, 1996, 17, 137-142.	1.5	22
135	Early stages of probable Alzheimer disease are associated with changes in platelet amyloid precursor protein forms. Neurological Sciences, 2002, 23, 207-210.	0.9	22
136	Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology, 2021, 190, 108551.	2.0	22
137	NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells, 2021, 10, 77.	1.8	20
138	A Combination of CSF Tau Ratio and Midsaggital Midbraintopons Atrophy for the Early Diagnosis of Progressive Supranuclear Palsy. Journal of Alzheimer's Disease, 2010, 22, 195-203.	1.2	18
139	Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neuroscience, 2020, 21, 6.	0.8	18
140	Microencephaly reduces the phosphorylation of the PKC substrate B-50/GAP43 in rat cortex and hippocampus. Brain Research, 1991, 538, 95-101.	1.1	17
141	Cholinesterase inhibitors exert a protective effect on endothelial damage in Alzheimer disease patients. Journal of the Neurological Sciences, 2005, 229-230, 211-213.	0.3	17
142	Genetic Background Predicts Poor Prognosis in Frontotemporal Lobar Degeneration. Neurodegenerative Diseases, 2011, 8, 289-295.	0.8	17
143	ADAM10 Plasma and CSF Levels Are Increased in Mild Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2416.	1.8	17
144	Increased Presynaptic Protein Kinase C Activity and Glutamate Release in Rats with a Prenatally Induced Hippocampal Lesion. European Journal of Neuroscience, 1997, 9, 472-479.	1.2	16

#	Article	IF	Citations
145	(+)-MCPG induces PKCε translocation in cortical synaptosomes through a PLD-coupled mGluR. European Journal of Neuroscience, 2000, 12, 1310-1318.	1.2	16
146	Functional correlates of Apolipoprotein E genotype in Frontotemporal Lobar Degeneration. BMC Neurology, 2006, 6, 31.	0.8	16
147	Determination of the endogenous phosphorylation state of B-50/GAP-43 and neurogranin in different brain regions by electrospray mass spectrometry. FEBS Letters, 1996, 389, 309-313.	1.3	15
148	Pathophysiological implications of the structural organization of the excitatory synapse. European Journal of Pharmacology, 1999, 375, 339-347.	1.7	15
149	Tau haplotype influences cerebral perfusion pattern in frontotemporal lobar degeneration and related disorders. Acta Neurologica Scandinavica, 2008, 117, 359-366.	1.0	15
150	The development of ADAM10 endocytosis inhibitors for the treatment of Alzheimer's disease. Molecular Therapy, 2022, 30, 2474-2490.	3.7	15
151	Selective alteration in B-50/GAP-43 phosphorylation in brain areas of animals characterized by cognitive impairment. Brain Research, 1993, 607, 329-332.	1.1	14
152	Latent profile analysis in frontotemporal lobar degeneration and related disorders: clinical presentation and SPECT functional correlates. BMC Neurology, 2007, 7, 9.	0.8	14
153	Genetic Bases of Progressive Supranuclear Palsy: The MAPT Tau Disease. Current Medicinal Chemistry, 2011, 18, 2655-2660.	1.2	13
154	Differential translocation of protein kinase C isozymes in rats characterized by a chronic lack of LTP induction and cognitive impairment. FEBS Letters, 1996, 393, 121-123.	1.3	12
155	Repeated treatment with haloperidol, but not olanzapine, alters synaptic NMDA receptor composition in rat striatum. European Neuropsychopharmacology, 2008, 18, 531-534.	0.3	12
156	New Insights into Biological Markers of Frontotemporal Lobar Degeneration Spectrum. Current Medicinal Chemistry, 2010, 17, 1002-1009.	1.2	12
157	The Synaptonuclear Messenger RNF10 Acts as an Architect of Neuronal Morphology. Molecular Neurobiology, 2019, 56, 7583-7593.	1.9	12
158	Nicergoline and its metabolite induce translocation of PKC isoforms in selective rat brain areas. Neuroscience Research Communications, 1998, 23, 159-167.	0.2	11
159	Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinsonâ∈™s and Alzheimer's Disease Patients. International Journal of Molecular Sciences, 2022, 23, 1539.	1.8	10
160	Cerebrospinal Fluid Tau in Frontotemporal Lobar Degeneration: Clinical, Neuroimaging, and Prognostic Correlates. Journal of Alzheimer's Disease, 2011, 23, 505-512.	1.2	9
161	LRRK2 phosphorylation level correlates with abnormal motor behaviour in an experimental model of levodopa-induced dyskinesias. Molecular Brain, 2016, 9, 53.	1.3	9
162	Amyloid- \hat{l}^2 Oligomers Regulate ADAM10 Synaptic Localization Through Aberrant Plasticity Phenomena. Molecular Neurobiology, 2019, 56, 7136-7143.	1.9	9

#	Article	IF	Citations
163	Differential mechanisms of tolerance induced by NMDA and 3,5â€dihydroxyphenylglycine (DHPG) preconditioning. Journal of Neurochemistry, 2020, 155, 638-649.	2.1	8
164	In vivo modulation of striatal phosphoproteins by dopaminergic agents. European Journal of Pharmacology, 1989, 172, 321-328.	2.7	6
165	Presenilin 2 Mutation Does Not Influence Expression and Concentration of APP Forms in Human Platelets. Molecular Medicine, 2000, 6, 816-824.	1.9	6
166	The effect of APOE genotype on clinical phenotype in Alzheimer disease. Neurology, 2007, 68, 624-624.	1.5	6
167	Role of Glycogen Synthase Kinase- $3\hat{l}^2$ in APP Hyperphosphorylation Induced by NMDA Stimulation in Cortical Neurons. Pharmaceuticals, 2010, 3, 42-58.	1.7	6
168	Cellular expression of somatostatin in MAM-induced microencephaly in the rat. Developmental Brain Research, 1992, 70, 39-46.	2.1	5
169	Measurement of relative amounts of phospho- and dephospho-B-50(GAP-43) peptides by fast atom bombardment-mass spectrometry. FEBS Letters, 1992, 301, 150-154.	1.3	4
170	Effect of rasagiline on the molecular composition of the excitatory postsynaptic density. European Journal of Pharmacology, 2011, 670, 458-463.	1.7	4
171	Increased [³ H]Dâ€aspartate release and changes in glutamate receptor expression in the hippocampus of the <i>mnd</i> mouse. Journal of Neuroscience Research, 2012, 90, 1148-1158.	1.3	4
172	\hat{l}^2 -Adrenoceptor desensitization induced by antigen challenge in guinea-pig trachea. European Journal of Pharmacology, 1990, 178, 21-27.	1.7	3
173	Advance on the diagnostic potential of biological markers in the early detection of Alzheimer Disease. Neuroscience Research Communications, 2004, 35, 232-245.	0.2	3
174	Catechol-o-methyltransferase gene polymorphism in dementia with Lewy bodies-related psychosis: evidence for a genetic predisposition. International Psychogeriatrics, 2006, 18, 755-757.	0.6	3
175	Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules, 2021, 11, 1261.	1.8	3
176	Advances On Biological Markers In Early Diagnosis Of Alzheimer Disease. Advances in Clinical Chemistry, 2005, 39, 107-129.	1.8	2
177	euroSCIENCE moves into sixth gear!. Trends in Neurosciences, 2002, 25, 591-594.	4.2	1
178	Tau haplotype affects CSF Tau levels in frontotemporal dementia. Journal of Neurology, 2006, 253, 946-946.	1.8	1
179	European neuroscience research: the road ahead European Journal of Neuroscience, 2011, 33, 767-767.	1.2	1
180	Reply to "Diagnosis of progressive supranuclear palsy: can measurement of tau forms help?― Neurobiology of Aging, 2012, 33, 1839-1840.	1.5	1

#	Article	lF	CITATIONS
181	NMDA receptors. , 2004, , 51-63.		1
182	Molecular biology of postsynaptic structures. , 2004, , 165-180.		0