Jasper Rine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8281296/publications.pdf

Version: 2024-02-01

		147726	168321
56	4,956	31	53
papers	citations	h-index	g-index
71	71	71	4265
71	71	71	4265
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Four Genes Responsible for a Position Effect on Expression From <i>HML</i> and <i>HMR</i> in <i>Saccharomyces cerevisiae</i> . Genetics, 1987, 116, 9-22.	1.2	685
2	The Establishment, Inheritance, and Function of Silenced Chromatin inSaccharomyces cerevisiae. Annual Review of Biochemistry, 2003, 72, 481-516.	5.0	678
3	Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18602-18607.	3.3	373
4	Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell, 1989, 59, 637-647.	13.5	349
5	Ordered Nucleation and Spreading of Silenced Chromatin inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 2207-2222.	0.9	235
6	Overlapping Functions of the Yeast Oxysterol-Binding Protein Homologues. Genetics, 2001, 157, 1117-1140.	1.2	233
7	A Second-Generation Genetic Linkage Map of the Domestic Dog, Canis familiaris. Genetics, 1999, 151, 803-820.	1.2	186
8	Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomy cescerevisiae. Genes and Development, 2006, 20, 700-710.	2.7	176
9	The Origin Recognition Complex, SIR1, and the S Phase Requirement for Silencing. Science, 1997, 276, 1547-1551.	6.0	160
10	Metabolism and Epigenetics. Annual Review of Cell and Developmental Biology, 2015, 31, 473-496.	4.0	147
11	The Role of Sas2, an Acetyltransferase Homologue of <i>Saccharomyces cerevisiae</i> , in Silencing and ORC Function. Genetics, 1997, 145, 923-934.	1.2	126
12	DNA Replication-Independent Silencing in S. cerevisiae. Science, 2001, 291, 646-650.	6.0	119
13	Yeast cell-type regulation of DNA repair. Nature, 1999, 397, 310-310.	13.7	113
14	The Chromatin and Transcriptional Landscape of Native <i>Saccharomyces cerevisiae</i> Telomeres and Subtelomeric Domains. Genetics, 2015, 200, 505-521.	1.2	92
15	A Region of the Sir1 Protein Dedicated to Recognition of a Silencer and Required for Interaction with the Orc1 Protein in Saccharomyces cerevisiae. Genetics, 1999, 151, 31-44.	1.2	91
16	A Role for the Replication Proteins PCNA, RF-C, Polymerase $\hat{l}\mu$ and Cdc45 in Transcriptional Silencing in Saccharomyces cerevisiae. Genetics, 1999, 153, 1171-1182.	1,2	83
17	Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. ELife, 2015, 4, e05007.	2.8	76
18	The establishment of gene silencing at single-cell resolution. Nature Genetics, 2009, 41, 800-806.	9.4	71

#	Article	IF	Citations
19	The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes and Development, 2014, 28, 245-258.	2.7	66
20	The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20605-20611.	3.3	53
21	HMR-I Is an Origin of Replication and a Silencer in Saccharomyces cerevisiae. Genetics, 1999, 151, 521-529.	1.2	53
22	Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells. Science, 2017, 355, 1184-1187.	6.0	51
23	Roles of Prenyl Protein Proteases in Maturation of Saccharomyces cerevisiae a-Factor. Genetics, 1998, 150, 95-101.	1.2	49
24	The <i>rye</i> Mutants Identify a Role for Ssn/Srb Proteins of the RNA Polymerase II Holoenzyme During Stationary Phase Entry in <i>Saccharomyces cerevisiae</i> Genetics, 2001, 157, 17-26.	1.2	47
25	Surrogate Genetics and Metabolic Profiling for Characterization of Human Disease Alleles. Genetics, 2012, 190, 1309-1323.	1.2	46
26	Cell Cycle Requirements in Assembling Silent Chromatin in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 852-862.	1.1	45
27	Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E144-53.	3.3	43
28	Multiple inputs control sulfur-containing amino acid synthesis in <i>Saccharomyces cerevisiae</i> Molecular Biology of the Cell, 2014, 25, 1653-1665.	0.9	39
29	Pivotal roles of PCNA loading and unloading in heterochromatin function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2030-E2039.	3.3	38
30	Theme and Variation Among Silencing Proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics, 1998, 148, 1021-1029.	1.2	37
31	Isolation and DNA sequence of the STE14 gene encoding farnesyl cysteine: Carboxyl methyltransferase. Yeast, 1993, 9, 907-913.	0.8	35
32	Sir- and Silencer-Independent Disruption of Silencing in Saccharomyces by Sas10p. Genetics, 1998, 149, 903-914.	1.2	35
33	<i>Kluyveromyces lactis</i> Sir2p Regulates Cation Sensitivity and Maintains a Specialized Chromatin Structure at the Cryptic α-Locus. Genetics, 2000, 156, 81-91.	1.2	35
34	Epigenetic memory independent of symmetric histone inheritance. ELife, 2019, 8, .	2.8	30
35	Oncometabolite D-2-Hydroxyglutarate enhances gene silencing through inhibition of specific H3K36 histone demethylases. ELife, 2017, 6, .	2.8	25
36	A future of the model organism model. Molecular Biology of the Cell, 2014, 25, 549-553.	0.9	23

#	Article	IF	CITATIONS
37	Mutations in the PCNA DNA Polymerase Clamp of <i>Saccharomyces cerevisiae </i> Reveal Complexities of the Cell Cycle and Ploidy on Heterochromatin Assembly. Genetics, 2019, 213, 449-463.	1.2	23
38	Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies. Mammalian Genome, 1998, 9, 349-354.	1.0	19
39	Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27493-27501.	3.3	19
40	Maintenance of Nucleosomal Balance in <i>cis</i> by Conserved AAA-ATPase Yta7. Genetics, 2015, 199, 105-116.	1.2	18
41	Histone Deacetylases with Antagonistic Roles in <i>Saccharomyces cerevisiae</i> Heterochromatin Formation. Genetics, 2016, 204, 177-190.	1.2	18
42	Distinguishing between recruitment and spread of silent chromatin structures in Saccharomyces cerevisiae. ELife, 2022, 11 , .	2.8	18
43	S-phase-independent silencing establishment in Saccharomyces cerevisiae. ELife, 2020, 9, .	2.8	17
44	CELL BIOLOGY: Twists in the Tale of the Aging Yeast. Science, 2005, 310, 1124-1125.	6.0	16
45	On the Mechanism of Gene Silencing in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1751-1763.	0.8	13
46	Evolution and Functional Trajectory of Sir1 in Gene Silencing. Molecular and Cellular Biology, 2016, 36, 1164-1179.	1.1	11
47	Nutritional Control of Chronological Aging and Heterochromatin in <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 205, 1179-1193.	1.2	8
48	Mono and Dual Cofactor Dependence of Human Cystathionine \hat{l}^2 -Synthase Enzyme Variants <i>In Vivo</i> and <i>In Vitro</i> . G3: Genes, Genomes, Genetics, 2013, 3, 1619-1628.	0.8	7
49	Riches of phenotype computationally extracted from microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2822-E2831.	3.3	7
50	The trans action of HMRa in mating type interconversion. Molecular Genetics and Genomics, 1980, 180, 99-105.	2.4	6
51	Assessing computational predictions of the phenotypic effect of cystathionineâ€betaâ€synthase variants. Human Mutation, 2019, 40, 1530-1545.	1.1	5
52	Donor Preference Meets Heterochromatin: Moonlighting Activities of a Recombinational Enhancer in <i>Saccharomyces cerevisiae</i> Cenetics, 2016, 204, 1065-1074.	1.2	4
53	Impact of Homologous Recombination on Silent Chromatin in <i>Saccharomyces cerevisiae</i> Genetics, 2018, 208, 1099-1113.	1.2	1
54	A novel allele of <i>SIR2</i> reveals a heritable intermediate state of gene silencing. Genetics, 2021, 218,	1.2	1

#	Article	lF	CITATIONS
55	The State of Federal Research Funding in Genetics as Reflected by Members of the Genetics Society of America. Genetics, 2015, 200, 1015-1019.	1.2	0
56	Sir protein–independent repair of dicentric chromosomes in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2016, 27, 2879-2883.	0.9	0