Chongqing Kang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8280743/chongqing-kang-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 274
papers
 9,141
citations
 54
h-index
 84
g-index

 297
ext. papers
 12,996
ext. citations
 7.5
avg, IF
 6.96
L-index

#	Paper	IF	Citations
274	Frequency Stability Enhancement of Low-Inertia Large-Scale Power System Based on Grey Wolf Optimization. <i>IEEE Access</i> , 2022 , 10, 11657-11668	3.5	2
273	Exploring the Cellular Base Station Dispatch Potential Towards Power System Frequency Regulation. <i>IEEE Transactions on Power Systems</i> , 2022 , 37, 820-823	7	0
272	Backcasting Technical and Policy Targets For Constructing Low-Carbon Power Systems. <i>IEEE Transactions on Power Systems</i> , 2022 , 1-1	7	
271	Enlarging flexibility region of virtual power plant via dynamic line rating. <i>IET Renewable Power Generation</i> , 2022 , 16, 751-760	2.9	0
270	Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 160, 112203	16.2	1
269	Bidding behaviors of GENCOs under bounded rationality with renewable energy. Energy, 2022, 250, 12	3 <i>7</i> ,93	0
268	Physics-Constrained Robustness Verification of Intelligent Security Assessment for Power Systems. <i>IEEE Transactions on Power Systems</i> , 2022 , 1-1	7	1
267	Open-Access Data and Toolbox for Tracking COVID-19 Impact on Power Systems. <i>IEEE Transactions on Power Systems</i> , 2022 , 1-1	7	0
266	Analytical Adequacy Evaluation for Power Consumers with UPS in Distribution Networks. <i>IEEE Transactions on Smart Grid</i> , 2022 , 1-1	10.7	1
265	Cost increase in the electricity supply to achieve carbon neutrality in China. <i>Nature Communications</i> , 2022 , 13,	17.4	8
264	A novel preheating coordination approach in electrified heat systems. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	O
263	Resilience Oriented Planning of Urban Multi-Energy Systems With Generalized Energy Storage Sources. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	5
262	Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling. <i>Joule</i> , 2021 , 5, 2715-2741	27.8	14
261	Quantum internet for resilient electric grids. <i>International Transactions on Electrical Energy Systems</i> , 2021 , 31, e12911	2.2	3
260	Embodied greenhouse gas emissions from building China large-scale power transmission infrastructure. <i>Nature Sustainability</i> , 2021 , 4, 739-747	22.1	19
259	Enhancing the power grid flexibility with battery energy storage transportation and transmission switching. <i>Applied Energy</i> , 2021 , 290, 116692	10.7	8
258	Robust Transmission Expansion Planning Based on Adaptive Uncertainty Set Optimization Under High-Penetration Wind Power Generation. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 2798-2814	7	2

(2020-2021)

257	Unsupervised Congestion Status Identification Using LMP Data. <i>IEEE Transactions on Smart Grid</i> , 2021 , 12, 726-736	10.7	6	
256	Steady-state security region of energy hub: Modeling, calculation, and applications. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 125, 106551	5.1	3	
255	Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands. <i>Applied Energy</i> , 2021 , 282, 116064	10.7	5	
254	Bounding Regression Errors in Data-Driven Power Grid Steady-State Models. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 1023-1033	7	6	
253	Sparse Oblique Decision Tree for Power System Security Rules Extraction and Embedding. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 1605-1615	7	6	
252	Non-Iterative Multi-Area Coordinated Dispatch via Condensed System Representation. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 1594-1604	7	3	
251	Transmission Planning With Battery-Based Energy Storage Transportation For Power Systems With High Penetration of Renewable Energy. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	8	
250	Deep Inverse Reinforcement Learning for Reward Function Identification in Bidding Models. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	3	
249	Estimating Demand Flexibility Using Siamese LSTM Neural Networks. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	2	
248	Forecast Aggregated Supply Curves in Power Markets based on LSTM Model. <i>IEEE Transactions on Power Systems</i> , 2021 , 1-1	7	1	
247	Preliminary analysis of long-term storage requirement in enabling high renewable energy penetration: A case of East Asia. <i>IET Renewable Power Generation</i> , 2021 , 15, 1255-1269	2.9	2	
246	Smart grid encounters edge computing: opportunities and applications. <i>Advances in Applied Energy</i> , 2021 , 1, 100006		29	
245	Aggregating Distributed Energy Storage: Cloud-Based Flexibility Services From China. <i>IEEE Power and Energy Magazine</i> , 2021 , 19, 63-73	2.4	4	
244	A Confidence-Aware Machine Learning Framework for Dynamic Security Assessment. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 3907-3920	7	1	
243	Evaluating the Dispatchable Capacity of Base Station Backup Batteries in Distribution Networks. <i>IEEE Transactions on Smart Grid</i> , 2021 , 12, 3966-3979	10.7	7	
242	Reliability and Vulnerability Assessment of Multi-Energy Systems: An Energy Hub Based Method. <i>IEEE Transactions on Power Systems</i> , 2021 , 36, 3948-3959	7	12	
241	Searching for Critical Power System Cascading Failures With Graph Convolutional Network. <i>IEEE Transactions on Control of Network Systems</i> , 2021 , 8, 1304-1313	4	0	
240	Estimating the Robust P-Q Capability of a Technical Virtual Power Plant Under Uncertainties. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 4285-4296	7	17	

239	. Proceedings of the IEEE, 2020 , 108, 1411-1436	14.3	20
238	Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets. <i>Applied Energy</i> , 2020 , 271, 115159	10.7	15
237	Integrating Heterogeneous Demand Response into N-1 Security Assessment by Multi-Parametric Programming 2020 ,		2
236	Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation. <i>Energy</i> , 2020 , 198, 117204	7.9	4
235	Smart Meter Data Analytics 2020 ,		11
234	Matrix modeling of energy hub with variable energy efficiencies. <i>International Journal of Electrical Power and Energy Systems</i> , 2020 , 119, 105876	5.1	19
233	Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid. <i>Applied Energy</i> , 2020 , 264, 114636	10.7	11
232	Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. <i>Applied Energy</i> , 2020 , 261, 114390	10.7	35
231	Fast Power System Cascading Failure Path Searching With High Wind Power Penetration. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 2274-2283	8.2	9
230	A Unit Commitment Algorithm With Relaxation-Based Neighborhood Search and Improved Relaxation Inducement. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 3800-3809	7	3
229	Modeling Frequency Dynamics in Unit Commitment With a High Share of Renewable Energy. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 4383-4395	7	40
228	Socio-demographic Information Identification 2020 , 187-204		
227	Prospects of Future Research Issues 2020 , 287-293		
226	Overview of Smart Meter Data Analytics 2020 , 1-35		1
225	Smart Meter Data Compression 2020 , 59-78		
224	Personalized Retail Price Design 2020 , 163-186		
223	Electricity Consumer Behavior Model 2020 , 37-57		1
222	Aggregated Load Forecasting with Sub-profiles 2020 , 271-285		

Partial Usage Pattern Extraction **2020**, 137-162

220	Coding for Household Energy Behavior 2020 , 205-223		
219	Clustering of Consumption Behavior Dynamics 2020 , 225-246		
218	Electricity Theft Detection 2020 , 79-98		1
217	Probabilistic Residential Load Forecasting 2020 , 247-269		1
216	Residential Load Data Generation 2020 , 99-135		1
215	Power market reform in China: Motivations, progress, and recommendations. <i>Energy Policy</i> , 2020 , 145, 111717	7.2	19
214	Situation awareness of electricity-gas coupled systems with a multi-port equivalent gas network model. <i>Applied Energy</i> , 2020 , 258, 114029	10.7	16
213	A Cost-Sharing Approach for Decentralized ElectricityHeat Operation With Renewables. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 1838-1847	8.2	7
212	Constraining the oligopoly manipulation in electricity market: A vertical integration perspective. <i>Energy</i> , 2020 , 194, 116877	7.9	5
211	Modeling Strategic Behaviors of Renewable Energy With Joint Consideration on Energy and Tradable Green Certificate Markets. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 1898-1910	7	10
210	A Data-Driven Pattern Extraction Method for Analyzing Bidding Behaviors in Power Markets. <i>IEEE Transactions on Smart Grid</i> , 2020 , 11, 3509-3521	10.7	8
209	Incentive Mechanism for Clearing Energy and Reserve Markets in Multi-Area Power Systems. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 2470-2482	8.2	23
208	Beijing subsidiary administrative center multi-energy systems: An optimal configuration planning. <i>Electric Power Systems Research</i> , 2020 , 179, 106082	3.5	10
207	A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise. <i>IEEE Transactions on Smart Grid</i> , 2020 , 11, 2576-2587	10.7	12
206	Transmission Expansion Planning Test System for AC/DC Hybrid Grid With High Variable Renewable Energy Penetration. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 2597-2608	7	29
205	A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the US Electricity Sector. <i>Joule</i> , 2020 , 4, 2322-2337	27.8	66
204	Near-real-time monitoring of global CO emissions reveals the effects of the COVID-19 pandemic. <i>Nature Communications</i> , 2020 , 11, 5172	17.4	204

203	Exploring the trade-offs between electric heating policy and carbon mitigation in China. <i>Nature Communications</i> , 2020 , 11, 6054	17.4	64
202	Building Digital Battery System via Energy Digitization for Sustainable 5G Power Feeding. <i>IEEE Wireless Communications</i> , 2020 , 27, 148-154	13.4	3
201	Modeling frequency response dynamics in power system scheduling. <i>Electric Power Systems Research</i> , 2020 , 189, 106549	3.5	6
200	Embedding scrapping criterion and degradation model in optimal operation of peak-shaving lithium-ion battery energy storage. <i>Applied Energy</i> , 2020 , 278, 115601	10.7	6
199	Planning district multiple energy systems considering year-round operation. <i>Energy</i> , 2020 , 213, 118829	7.9	4
198	Expansion Planning Model Coordinated with both Stationary and Transportable Storage Systems for Transmission Networks with High RES Penetration 2020 ,		1
197	Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 188-201	7	60
196	Efficiency Loss for Variable Renewable Energy Incurred by Competition in Electricity Markets. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 1951-1964	8.2	8
195	Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. <i>IEEE Transactions on Smart Grid</i> , 2020 , 11, 1307-1318	10.7	44
194	Impact of High Renewable Penetration on the Power System Operation Mode: A Data-Driven Approach. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 731-741	7	27
193	A Block-of-Use Electricity Retail Pricing Approach Based on the Customer Load Profile. <i>IEEE Transactions on Smart Grid</i> , 2020 , 11, 1500-1509	10.7	1
192	On An Equivalent Representation of the Dynamics in District Heating Networks for Combined Electricity-Heat Operation. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 560-570	7	35
191	Incorporating Massive Scenarios in Transmission Expansion Planning With High Renewable Energy Penetration. <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 1061-1074	7	24
190	Adjustable and distributionally robust chance-constrained economic dispatch considering wind power uncertainty. <i>Journal of Modern Power Systems and Clean Energy</i> , 2019 , 7, 658-664	4	7
189	Electricity wholesale market equilibrium analysis integrating individual risk-averse features of generation companies. <i>Applied Energy</i> , 2019 , 252, 113443	10.7	9
188	Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design. <i>Applied Energy</i> , 2019 , 252, 113471	10.7	62
187	Incentive mechanism for sharing distributed energy resources. <i>Journal of Modern Power Systems and Clean Energy</i> , 2019 , 7, 837-850	4	26
186	Enforcing Intra-Regional Constraints in Tie-Line Scheduling: A Projection-Based Framework. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 4751-4761	7	15

185	Market Power Mitigation Clearing Mechanism Based on Constrained Bidding Capacities. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 4817-4827	7	19
184	Estimating the Wind Power Integration Threshold Considering Electro-Thermal Coupling of Overhead Transmission Lines. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 3349-3358	7	8
183	Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. <i>Applied Energy</i> , 2019 , 242, 205-215	10.7	61
182	Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 6014-6028	10.7	35
181	Compositional Power Flow for Networked Microgrids. <i>IEEE Power and Energy Technology Systems Journal</i> , 2019 , 6, 81-84	4.3	1
180	Reliability Value of Distributed Solar+Storage Systems Amidst Rare Weather Events. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 4476-4486	10.7	19
179	Modeling the Operation Mechanism of Combined P2G and Gas-Fired Plant With CO2 Recycling. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 1111-1121	10.7	49
178	Robust Two-Stage Regional-District Scheduling of Multi-carrier Energy Systems With a Large Penetration of Wind Power. <i>IEEE Transactions on Sustainable Energy</i> , 2019 , 10, 1227-1239	8.2	79
177	. IEEE Transactions on Power Systems, 2019 , 34, 140-151	7	40
176	Combining Probabilistic Load Forecasts. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 3664-3674	10.7	87
175	Feature selection for probabilistic load forecasting via sparse penalized quantile regression. Journal of Modern Power Systems and Clean Energy, 2019 , 7, 1200-1209	4	10
174	From demand response to integrated demand response: review and prospect of research and application. <i>Protection and Control of Modern Power Systems</i> , 2019 , 4,	6.7	93
173	GAN-based Model for Residential Load Generation Considering Typical Consumption Patterns 2019 ,		10
172	Copula Theory and Dependent Probabilistic Sequence Operation 2019 , 11-30		
171	Data-Driven Load Data Cleaning and Its Impacts on Forecasting Performance 2019,		1
170	Fast Multi-Energy Systems Reliability Evaluation Using Multi-Parametric Linear Programming 2019,		2
169	Planning Multiple Energy Systems Toward Low-Carbon Society: A Decentralized Approach. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 4859-4869	10.7	42
168	Probabilistic individual load forecasting using pinball loss guided LSTM. <i>Applied Energy</i> , 2019 , 235, 10-2	010.7	148

167	. IEEE Transactions on Power Systems, 2019 , 34, 1895-1907	7	23
166	A High-Efficiency Network-Constrained Clustered Unit Commitment Model for Power System Planning Studies. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 2498-2508	7	16
165	Introducing Uncertainty Components in Locational Marginal Prices for Pricing Wind Power and Load Uncertainties. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 2013-2024	7	39
164	Operation Strategy of Smart Thermostats That Self-Learn User Preferences. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 5770-5780	10.7	6
163	A Novel Combined Data-Driven Approach for Electricity Theft Detection. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 1809-1819	11.9	83
162	MPLP-Based Fast Power System Reliability Evaluation Using Transmission Line Status Dictionary. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 1630-1640	7	15
161	Standardized Matrix Modeling of Multiple Energy Systems. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 257-270	10.7	89
160	. IEEE Transactions on Smart Grid, 2019 , 10, 1417-1427	10.7	64
159	Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 1452-1464	10.7	125
158	Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 3125-3148	10.7	394
157	Data-Driven Power Flow Linearization: A Regression Approach. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 2569-2580	10.7	58
156	Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 2593-2602	10.7	79
155	Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 1608-1618	8.9	24
154	Modeling Carbon Emission Flow in Multiple Energy Systems. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 3562-3574	10.7	44
153	An Ensemble Forecasting Method for the Aggregated Load With Subprofiles. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 3906-3908	10.7	95
152	Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: an ERCOT case study. <i>Journal of Modern Power Systems and Clean Energy</i> , 2018 , 6, 281-291	4	18
151	Economic Benefits of Integrating Solar-Powered Heat Pumps Into a CHP System. <i>IEEE Transactions on Sustainable Energy</i> , 2018 , 9, 1702-1712	8.2	24
150	Tri-Level Expansion Planning for Transmission Networks and Distributed Energy Resources Considering Transmission Cost Allocation. <i>IEEE Transactions on Sustainable Energy</i> , 2018 , 9, 1844-1856	8.2	26

149	Scenario Map Based Stochastic Unit Commitment. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 4694-4	4 <i>7</i> / 05	22
148	Optimal operation strategy for distributed battery aggregator providing energy and ancillary services. <i>Journal of Modern Power Systems and Clean Energy</i> , 2018 , 6, 722-732	4	20
147	Economic justification of concentrating solar power in high renewable energy penetrated power systems. <i>Applied Energy</i> , 2018 , 222, 649-661	10.7	43
146	Guest Editorial for the Special Section on Enabling Very High Penetration Renewable Energy Integration Into Future Power Systems. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 3223-3226	7	5
145	An Efficient Approach to Power System Uncertainty Analysis With High-Dimensional Dependencies. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 2984-2994	7	82
144	Embedding based quantile regression neural network for probabilistic load forecasting. <i>Journal of Modern Power Systems and Clean Energy</i> , 2018 , 6, 244-254	4	32
143	An algorithm for practical power curve estimation of wind turbines. <i>CSEE Journal of Power and Energy Systems</i> , 2018 , 4, 93-102	2.3	9
142	Steady-State Power Flow Model of Energy Router Embedded AC Network and Its Application in Optimizing Power System Operation. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 4828-4837	10.7	36
141	Optimal Planning Strategy for Distributed Energy Resources Considering Structural Transmission Cost Allocation. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 5236-5248	10.7	22
140	Decision-Making Models for the Participants in Cloud Energy Storage. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 5512-5521	10.7	44
139	Optimal Power Flow in ACDC Grids With Discrete Control Devices. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 1461-1472	7	37
138	A Linearized OPF Model With Reactive Power and Voltage Magnitude: A Pathway to Improve the MW-Only DC OPF. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 1734-1745	7	116
137	Effect of Natural Gas Flow Dynamics in Robust Generation Scheduling Under Wind Uncertainty. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 2087-2097	7	74
136	Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. <i>Applied Energy</i> , 2018 , 210, 1141-1150	10.7	130
135	Power generation scheduling considering stochastic emission limits. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 95, 374-383	5.1	15
134	A monthly electricity consumption forecasting method based on vector error correction model and self-adaptive screening method. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 95, 427-439	5.1	26
133	Big Data Analytics in China's Electric Power Industry: Modern Information, Communication Technologies, and Millions of Smart Meters. <i>IEEE Power and Energy Magazine</i> , 2018 , 16, 54-65	2.4	19
132	The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. <i>IEEE Transactions on Power Systems</i> , 2018 , 33, 6630-6641	7	80

131	Automatic and linearized modeling of energy hub and its flexibility analysis. <i>Applied Energy</i> , 2018 , 211, 705-714	10.7	58
130	Fundamental Review of the OPF Problem: Challenges, Solutions, and State-of-the-Art Algorithms. Journal of Energy Engineering - ASCE, 2018 , 144, 04017075	1.7	11
129	Market equilibrium analysis with high penetration of renewables and gas-fired generation: An empirical case of the Beijing-Tianjin-Tangshan power system. <i>Applied Energy</i> , 2018 , 227, 384-392	10.7	10
128	Optimal Operation of Hybrid AC/DC Distribution Network with High Penetrated Renewable Energy 2018 ,		5
127	Linearized Model for Active and Reactive LMP Considering Bus Voltage Constraints 2018,		3
126	Constructing Probabilistic Load Forecast From Multiple Point Forecasts: A Bootstrap Based Approach 2018 ,		2
125	On Normality Assumption in Residual Simulation for Probabilistic Load Forecasting. <i>IEEE Transactions on Smart Grid</i> , 2017 , 8, 1046-1053	10.7	54
124	Decentralized Intraday Generation Scheduling for Multiarea Power Systems via Dynamic Multiplier-Based Lagrangian Relaxation. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 454-463	7	26
123	LMP Revisited: A Linear Model for the Loss-Embedded LMP. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 4080-4090	7	36
122	Distributed real-time demand response based on Lagrangian multiplier optimal selection approach. <i>Applied Energy</i> , 2017 , 190, 949-959	10.7	28
121	Optimal joint-dispatch of energy and reserve for CCHP-based microgrids. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 785-794	2.5	62
120	Harnessing Flexibility from Hot and Cold: Heat Storage and Hybrid Systems Can Play a Major Role. <i>IEEE Power and Energy Magazine</i> , 2017 , 15, 25-33	2.4	29
119	Analysis of transmission expansion planning considering consumption-based carbon emission accounting. <i>Applied Energy</i> , 2017 , 193, 232-242	10.7	23
118	Long-term coordination of transmission and storage to integrate wind power. <i>CSEE Journal of Power and Energy Systems</i> , 2017 , 3, 36-43	2.3	32
117	Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production. <i>Applied Energy</i> , 2017 , 193, 540-549	10.7	16
116	Cooperation of Wind Power and Battery Storage to Provide Frequency Regulation in Power Markets. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 3559-3568	7	95
115	Cloud energy storage for residential and small commercial consumers: A business case study. <i>Applied Energy</i> , 2017 , 188, 226-236	10.7	78
114	A State-Independent Linear Power Flow Model With Accurate Estimation of Voltage Magnitude. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 3607-3617	7	109

(2017-2017)

113	Dependent Discrete Convolution Based Probabilistic Load Flow for the Active Distribution System. <i>IEEE Transactions on Sustainable Energy</i> , 2017 , 8, 1000-1009	8.2	56
112	Linear three-phase power flow for unbalanced active distribution networks with PV nodes. <i>CSEE Journal of Power and Energy Systems</i> , 2017 , 3, 321-324	2.3	47
111	Stochastic scheduling ensuring air quality through wind power and storage coordination. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 2031-2040	2.5	4
110	A Nash-Cournot approach to assessing flexible ramping products. <i>Applied Energy</i> , 2017 , 206, 42-50	10.7	13
109	Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products. <i>Applied Energy</i> , 2017 , 205, 294-303	10.7	91
108	Integrated Energy Systems for Higher Wind Penetration in China: Formulation, Implementation, and Impacts. <i>IEEE Transactions on Power Systems</i> , 2017 , 1-1	7	23
107	Corrective receding horizon scheduling of flexible distributed multi-energy microgrids. <i>Applied Energy</i> , 2017 , 207, 176-194	10.7	54
106	Review and prospect of integrated demand response in the multi-energy system. <i>Applied Energy</i> , 2017 , 202, 772-782	10.7	225
105	Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap. <i>Applied Energy</i> , 2017 , 185, 56-67	10.7	55
104	Transmission capacity margin in market clearing. <i>Electric Power Systems Research</i> , 2017 , 143, 682-691	3.5	1
103	Managing Wind Power Uncertainty Through Strategic Reserve Purchasing. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 2547-2559	7	33
102	Optimal transmission conversion from alternating current to high voltage direct current transmission systems for limiting short circuit currents. <i>Energy</i> , 2017 , 118, 545-555	7.9	O
101	A novel network model for optimal power flow with reactive power and network losses. <i>Electric Power Systems Research</i> , 2017 , 144, 63-71	3.5	29
100	Optimal Reactive Power Dispatch With Accurately Modeled Discrete Control Devices: A Successive Linear Approximation Approach. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 2435-2444	7	44
99	Sparse and Redundant Representation-Based Smart Meter Data Compression and Pattern Extraction. <i>IEEE Transactions on Power Systems</i> , 2017 , 32, 2142-2151	7	74
98	Low-carbon economic dispatch for integrated heat and power systems considering network constraints. <i>Journal of Engineering</i> , 2017 , 2017, 2628-2633	0.7	4
97	Modeling the transient security constraints of natural gas network in day-ahead power system scheduling 2017 ,		1
96	Solving OPF using linear approximations: fundamental analysis and numerical demonstration. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 4115-4125	2.5	30

95	A Probabilistic Method for Determining Grid-Accommodable Wind Power Capacity Based on Multiscenario System Operation Simulation. <i>IEEE Transactions on Smart Grid</i> , 2016 , 7, 400-409	10.7	16
94	Optimal Transmission Switching With Short-Circuit Current Limitation Constraints. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 1278-1288	7	34
93	A Game Theoretical Pricing Mechanism for Multi-Area Spinning Reserve Trading Considering Wind Power Uncertainty. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 1084-1095	7	23
92	Evaluating the impacts of flexible ramping products on the market equilibrium 2016,		2
91	Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. <i>Applied Energy</i> , 2016 , 184, 987-994	10.7	148
90	Cross-domain feature selection and coding for household energy behavior. <i>Energy</i> , 2016 , 107, 9-16	7.9	18
89	Optimal Bidding Strategy of Battery Storage in Power Markets Considering Performance-Based Regulation and Battery Cycle Life. <i>IEEE Transactions on Smart Grid</i> , 2016 , 7, 2359-2367	10.7	206
88	Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. <i>IEEE Transactions on Smart Grid</i> , 2016 , 7, 2817-2826	10.7	265
87	Optimal Offering Strategy for Concentrating Solar Power Plants in Joint Energy, Reserve and Regulation Markets. <i>IEEE Transactions on Sustainable Energy</i> , 2016 , 7, 1245-1254	8.2	80
86	Copula Based Dependent Discrete Convolution for Power System Uncertainty Analysis. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 5204-5205	7	31
85	Coordination of Generation Maintenance Scheduling in Electricity Markets. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 4565-4574	7	19
84	Coordination of generation maintenance scheduling and long-term SCUC with energy constraints and N 🗈 contingencies. <i>IET Generation, Transmission and Distribution</i> , 2016 , 10, 325-333	2.5	7
83	Evaluating the Contribution of Energy Storages to Support Large-Scale Renewable Generation in Joint Energy and Ancillary Service Markets. <i>IEEE Transactions on Sustainable Energy</i> , 2016 , 7, 808-818	8.2	82
82	Techno-economic analysis of contingency reserve allocation scheme for combined UHV DC and AC receiving-end power system. <i>CSEE Journal of Power and Energy Systems</i> , 2016 , 2, 62-70	2.3	10
81	A Two-Level Approach to AC Optimal Transmission Switching With an Accelerating Technique. <i>IEEE Transactions on Power Systems</i> , 2016 , 1-1	7	13
80	Residential smart meter data compression and pattern extraction via non-negative K-SVD 2016 ,		3
79	Evaluating the spatial correlations of multi-area load forecasting errors 2016,		2
78	Smart Metering Load Data Compression Based on Load Feature Identification. <i>IEEE Transactions on Smart Grid</i> , 2016 , 7, 2414-2422	10.7	46

77	Pool equilibria including strategic storage. <i>Applied Energy</i> , 2016 , 177, 260-270	10.7	30
76	Impact of Wind Power Scenario Reduction Techniques on Stochastic Unit Commitment 2016 ,		6
75	Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. <i>IET Generation, Transmission and Distribution</i> , 2016 , 10, 1278-1285	2.5	23
74	Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications. <i>IEEE Transactions on Smart Grid</i> , 2016 , 7, 2437-2447	10.7	168
73	A Structural Transmission Cost Allocation Scheme Based on Capacity Usage Identification. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 2876-2884	7	19
72	Optimal power flow based on successive linear approximation of power flow equations. <i>IET Generation, Transmission and Distribution</i> , 2016 , 10, 3654-3662	2.5	61
71	Estimating life-cycle energy payback ratio of overhead transmission line toward low carbon development. <i>Journal of Modern Power Systems and Clean Energy</i> , 2015 , 3, 123-130	4	4
70	Multi-stage coupon incentive-based demand response in two-settlement electricity markets 2015 ,		6
69	A decomposition method for network-constrained unit commitment with AC power flow constraints. <i>Energy</i> , 2015 , 88, 595-603	7.9	33
68	Distribution Pricing: Are We Ready for the Smart Grid?. IEEE Power and Energy Magazine, 2015, 13, 76-8	62.4	14
68 67	Distribution Pricing: Are We Ready for the Smart Grid?. <i>IEEE Power and Energy Magazine</i> , 2015 , 13, 76-8. . <i>IEEE Transactions on Power Systems</i> , 2015 , 30, 1015-1016	62.4 7	3
		•	
67	. IEEE Transactions on Power Systems, 2015, 30, 1015-1016 Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy	7	3
67 66	. IEEE Transactions on Power Systems, 2015, 30, 1015-1016 Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy, 2015, 83, 14-25 Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Transactions on	7	3
67 66 65	. IEEE Transactions on Power Systems, 2015, 30, 1015-1016 Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy, 2015, 83, 14-25 Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Transactions on Smart Grid, 2015, 6, 2386-2394 Incentive compatible pool-based electricity market design and implementation: A Bayesian	7 7.2 10.7	3 36 52
67 66 65	. IEEE Transactions on Power Systems, 2015, 30, 1015-1016 Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy, 2015, 83, 14-25 Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Transactions on Smart Grid, 2015, 6, 2386-2394 Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach. Applied Energy, 2015, 158, 508-518 N Di Becurity assessment approach based on the steady-state security distance. IET Generation,	7 7.2 10.7	3 36 52 25
67 66 65 64 63	. IEEE Transactions on Power Systems, 2015, 30, 1015-1016 Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy, 2015, 83, 14-25 Carbon Emission Flow From Generation to Demand: A Network-Based Model. IEEE Transactions on Smart Grid, 2015, 6, 2386-2394 Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach. Applied Energy, 2015, 158, 508-518 N D Becurity assessment approach based on the steady-state security distance. IET Generation, Transmission and Distribution, 2015, 9, 2419-2426 Transmission network expansion planning with embedded constraints of short circuit currents and	7 7.2 10.7	3 36 52 25 15

59	A Convex Model of Risk-Based Unit Commitment for Day-Ahead Market Clearing Considering Wind Power Uncertainty. <i>IEEE Transactions on Power Systems</i> , 2015 , 30, 1582-1592	7	81
58	Increasing the Flexibility of Combined Heat and Power for Wind Power Integration in China: Modeling and Implications. <i>IEEE Transactions on Power Systems</i> , 2015 , 30, 1848-1857	7	314
57	Integrated dispatch of generation and load: A pathway towards smart grids. <i>Electric Power Systems Research</i> , 2015 , 120, 206-213	3.5	23
56	Load profiling and its application to demand response: A review. <i>Tsinghua Science and Technology</i> , 2015 , 20, 117-129	3.4	142
55	A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining. <i>IEEE Transactions on Sustainable Energy</i> , 2015 , 6, 1283-1291	8.2	91
54	An Efficient Decomposition Method for the Integrated Dispatch of Generation and Load. <i>IEEE Transactions on Power Systems</i> , 2015 , 30, 2923-2933	7	22
53	Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit. <i>Journal of Electrical Engineering and Technology</i> , 2015 , 10, 1930-1939	1.4	1
52	Modeling Conditional Forecast Error for Wind Power in Generation Scheduling. <i>IEEE Transactions on Power Systems</i> , 2014 , 29, 1316-1324	7	145
51	Improving the Accuracy of Bus Load Forecasting by a Two-Stage Bad Data Identification Method. <i>IEEE Transactions on Power Systems</i> , 2014 , 29, 1634-1641	7	32
50	Inducing-objective-function-based method for long-term SCUC with energy constraints. International Journal of Electrical Power and Energy Systems, 2014, 63, 971-978	5.1	9
49	Synergies of wind power and electrified space heating: case study for Beijing. <i>Environmental Science & Environmental Science </i>	10.3	23
48	Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 32, 671-683	16.2	36
47	Anti-disaster transmission expansion planning considering wind power integration using ordinal optimization 2014 ,		1
46	Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	9
45	Day-ahead battery scheduling in microgrid considering wind power uncertainty using ordinal optimization 2014 ,		2
44	Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. <i>Applied Energy</i> , 2014 , 117, 149-156	10.7	85
43	Zonal marginal pricing approach based on sequential network partition and congestion contribution identification. <i>International Journal of Electrical Power and Energy Systems</i> , 2013 , 51, 321-3	32 ⁵ 8 ¹	16
42	Dynamic Economic Dispatch Considering Transmission Losses Using Quadratically Constrained Quadratic Program Method. <i>IEEE Transactions on Power Systems</i> , 2013 , 28, 2232-2241	7	45

(2011-2013)

41	Mid-short-term risk assessment of power systems considering impact of external environment. Journal of Modern Power Systems and Clean Energy, 2013, 1, 118-126	4	6
40	Balance of Power: Toward a More Environmentally Friendly, Efficient, and Effective Integration of Energy Systems in China. <i>IEEE Power and Energy Magazine</i> , 2013 , 11, 56-64	2.4	49
39	Multi-period coordinated active-reactive scheduling of active distribution system 2013,		1
38	Low-Carbon Power System Dispatch Incorporating Carbon Capture Power Plants. <i>IEEE Transactions on Power Systems</i> , 2013 , 28, 4615-4623	7	56
37	Planning Pumped Storage Capacity for Wind Power Integration. <i>IEEE Transactions on Sustainable Energy</i> , 2013 , 4, 393-401	8.2	86
36	Rigorous model for evaluating wind power capacity credit. <i>IET Renewable Power Generation</i> , 2013 , 7, 504-513	2.9	14
35	Steady-state security assessment method based on distance to security region boundaries. <i>IET Generation, Transmission and Distribution</i> , 2013 , 7, 288-297	2.5	37
34	Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula. Journal of Electrical Engineering and Technology, 2013 , 8, 1615-1625	1.4	16
33	Analysis on demand-side interactive response capability for power system dispatch in a smart grid framework. <i>Electric Power Systems Research</i> , 2012 , 90, 11-17	3.5	20
32	Carbon emission flow in networks. <i>Scientific Reports</i> , 2012 , 2, 479	4.9	45
31	Optimal Flexible Operation of a CO \$_{2}\$ Capture Power Plant in a Combined Energy and Carbon Emission Market. <i>IEEE Transactions on Power Systems</i> , 2012 , 27, 1602-1609	7	44
30	Evaluating low-carbon effects of demand response from smart distribution grid 2012,		7
29	A rural heat load direct control model for wind power integration in China 2012,		2
28	Unit Commitment With Volatile Node Injections by Using Interval Optimization. <i>IEEE Transactions on Power Systems</i> , 2011 , 26, 1705-1713	7	143
27	A novel security stochastic unit commitment for wind-thermal system operation 2011,		8
26	. IEEE Transactions on Power Systems, 2011 , 26, 500-507	7	62
25	Preliminary exploration on low-carbon technology roadmap of China® power sector. <i>Energy</i> , 2011 , 36, 1500-1512	7.9	71
24	Novel approach of modeling load duration curve for generation expansion planning based on Hill's function. <i>IEEJ Transactions on Electrical and Electronic Engineering</i> , 2011 , 6, 304-310	1	1

23	Thermal generation operating cost variations with wind power integration 2011,		4
22	Transition of tariff structure and distribution pricing in China 2011 ,		12
21	Demand side management in China 2010 ,		13
20	Real option analysis on carbon capture power plants under flexible operation mechanism 2010,		3
19	Power Generation Expansion Planning Model Towards Low-Carbon Economy and Its Application in China. <i>IEEE Transactions on Power Systems</i> , 2010 , 25, 1117-1125	7	134
18	Improved Bisection Searching Technique for voltage collapse analysis in reliability evaluation 2010,		2
17	Modeling Flexible Operation Mechanism of \$hbox{CO}_{2}\$ Capture Power Plant and Its Effects on Power-System Operation. <i>IEEE Transactions on Energy Conversion</i> , 2010 , 25, 853-861	5.4	47
16	Novel transmission pricing scheme based on point-to-point tariff and transaction pair matching for pool market. <i>Electric Power Systems Research</i> , 2010 , 80, 481-488	3.5	7
15	Input-output table of electricity demand and its application. <i>Energy</i> , 2010 , 35, 326-331	7.9	23
14	SIMULATION METHODOLOGY OF MULTIPLE WIND FARMS OPERATION CONSIDERING WIND SPEED CORRELATION. <i>International Journal of Power and Energy Systems</i> , 2010 , 30,	1.3	14
13	Novel approach for evaluation of service reliability for electricity customers. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 2585-2590		2
12	Multiple-interval power system dispatch considering probabilistic wind generation 2009,		1
11	Development of multidimensional sequence operation theory with applications to risk evaluation in power system generation scheduling. <i>Science in China Series D: Earth Sciences</i> , 2008 , 51, 724-734		5
10			
	Novel approach to assess local market power considering transmission constraints. <i>International Journal of Electrical Power and Energy Systems</i> , 2008 , 30, 39-45	5.1	8
9		5.1	1
9	Journal of Electrical Power and Energy Systems, 2008, 30, 39-45 Transition of China Power Industry: Market and Reliability Issues. IEEE Power Engineering Society	5.1 3·5	
	Journal of Electrical Power and Energy Systems, 2008, 30, 39-45 Transition of China Power Industry: Market and Reliability Issues. IEEE Power Engineering Society General Meeting, 2007, Incorporating reliability evaluation into the uncertainty analysis of electricity market price. Electric	3.5	1

LIST OF PUBLICATIONS

5	Sequence operation theory and its application in power system reliability evaluation. <i>Reliability Engineering and System Safety</i> , 2002 , 78, 101-109	6.3	17	
4	Effective decomposition and co-ordination algorithms for unit commitment and economic dispatch with security constraints. <i>Electric Power Systems Research</i> , 2000 , 53, 39-45	3.5	8	
3	Dynamic queuing approach to power system short term economic and security dispatch. <i>IEEE Transactions on Power Systems</i> , 1998 , 13, 280-285	7	11	
2	Novel models and algorithms for generating unit location optimization. <i>IEEE Transactions on Power Systems</i> , 1997 , 12, 1584-1590	7	4	
1	Risk evaluation of electricity price and its sensitivity analysis after deregulation		1	