
## Berta Dopico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8280565/publications.pdf Version: 2024-02-01



REDTA DODICO

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cloning and characterization of avocado fruit mRNAs and their expression during ripening and low-temperature storage. Plant Molecular Biology, 1993, 21, 437-449.                                                                   | 2.0 | 74        |
| 2  | Partial purification of cell wall beta-galactosidases from Cicer arietinum epicotyls. Relationship with cell wall autolytic processes. Physiologia Plantarum, 1989, 75, 458-464.                                                    | 2.6 | 69        |
| 3  | Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiology and Biochemistry, 2001, 39, 1017-1026.                                                                                             | 2.8 | 64        |
| 4  | Cloning of a Cicer arietinum $\hat{l}^2$ -Galactosidase with Pectin-Degrading Function. Plant and Cell Physiology, 2003, 44, 718-725.                                                                                               | 1.5 | 42        |
| 5  | In vivo Expression of a Cicer arietinum β-galactosidase in Potato Tubers Leads to a Reduction of the Galactan Side-chains in Cell Wall Pectin. Plant and Cell Physiology, 2005, 46, 1613-1622.                                      | 1.5 | 35        |
| 6  | Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002, 163, 507-514.                                                                                   | 1.7 | 34        |
| 7  | Brassinolides promote the expression of a new Cicer arietinum beta-tubulin gene involved in the epicotyl elongation. Plant Molecular Biology, 1998, 37, 807-817.                                                                    | 2.0 | 33        |
| 8  | A family of β-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant<br>Science, 2005, 168, 457-466.                                                                                             | 1.7 | 31        |
| 9  | Effect of osmotic stress on the growth of epicotyls of Cicer arietinum in relation to changes in cell wall composition. Physiologia Plantarum, 1993, 87, 552-560.                                                                   | 2.6 | 28        |
| 10 | Cell wall localization of the natural substrate of a beta-galactosidase, the main enzyme responsible<br>for the autolytic process of Cicer arietinum epicotyl cell walls. Physiologia Plantarum, 1990, 80,<br>636-641.              | 2.6 | 27        |
| 11 | β-(1,4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation. Planta, 2019, 249, 351-362.                                                                                              | 1.6 | 27        |
| 12 | The gene for a xyloglucan endotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiology and Biochemistry, 2005, 43, 169-176.                                                    | 2.8 | 26        |
| 13 | Two cell wall Kunitz trypsin inhibitors in chickpea during seed germination and seedling growth.<br>Plant Physiology and Biochemistry, 2009, 47, 181-187.                                                                           | 2.8 | 26        |
| 14 | Two growth-related organ-specific cDNAs from Cicer arietinum epicotyls. Plant Molecular Biology,<br>1997, 35, 433-442.                                                                                                              | 2.0 | 24        |
| 15 | Brassinolides and IAA induce the transcription of four α-expansin genes related to development in<br>Cicer arietinum. Plant Physiology and Biochemistry, 2004, 42, 709-716.                                                         | 2.8 | 24        |
| 16 | The immunolocation of a xyloglucan endotransglucosylase/hydrolase specific to elongating tissues<br>in Cicer arietinum suggests a role in the elongation of vascular cells. Journal of Experimental Botany,<br>2006, 57, 3979-3988. | 2.4 | 23        |
| 17 | Characterization and localization of the cell wall autolysis substrate in Pisum sativum epicotyls.<br>Plant Science, 1986, 44, 155-161.                                                                                             | 1.7 | 22        |
| 18 | Characterization of a cell wall beta-galactosidase of Cicer arietinum epicotyls involved in cell wall autolysis. Physiologia Plantarum, 1990, 80, 629-635.                                                                          | 2.6 | 22        |

Berta Dopico

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of osmotic stress on the growth of epicotyls of Cicer arietinum in relation to changes in the autolytic process and glycanhydrolytic cell wall enzymes. Physiologia Plantarum, 1993, 87, 544-551.                    | 2.6 | 22        |
| 20 | Transcriptional profiling ofÂcell wall protein genes inÂchickpea embryonic axes during germination<br>andÂgrowth. Plant Physiology and Biochemistry, 2006, 44, 684-692.                                                     | 2.8 | 21        |
| 21 | A chickpea Kunitz trypsin inhibitor is located in cell wall of elongating seedling organs and vascular<br>tissue. Planta, 2007, 226, 45-55.                                                                                 | 1.6 | 21        |
| 22 | A cDNA encoding a proline-rich protein from Cicer arietinum . Changes in expression during development and abiotic stresses. Physiologia Plantarum, 1998, 102, 582-590.                                                     | 2.6 | 18        |
| 23 | Immunolocalization of a Cell Wall ß-Galactosidase Reveals its Developmentally Regulated Expression<br>in Cicer arietinum and its Relationship to Vascular Tissue. Journal of Plant Growth Regulation, 2008,<br>27, 181-191. | 2.8 | 17        |
| 24 | The accumulation of a Kunitz trypsin inhibitor from chickpea (TPI-2) located in cell walls is increased in wounded leaves and elongating epicotyls. Physiologia Plantarum, 2008, 132, 306-317.                              | 2.6 | 17        |
| 25 | Partial purification of cell wall alpha-galactosidases and alpha-arabinosidases from Cicer arietinum<br>epicotyls. Relationship with cell wall autolytic processes. Physiologia Plantarum, 1989, 75, 465-468.               | 2.6 | 14        |
| 26 | Changes during epicotyl growth of an autolysis-related β-galactosidase from the cell wall of Cicer<br>arietinum. Plant Science, 1990, 72, 45-51.                                                                            | 1.7 | 14        |
| 27 | The Location of the Chickpea Cell Wall ßV-Galactosidase Suggests Involvement in the Transition<br>between Cell Proliferation and Cell Elongation. Journal of Plant Growth Regulation, 2009, 28, 1-11.                       | 2.8 | 14        |
| 28 | Pectic galactan affects cell wall architecture during secondary cell wall deposition. Planta, 2020,<br>251, 100.                                                                                                            | 1.6 | 14        |
| 29 | Promoter activities of genes encoding Î <sup>2</sup> -galactosidases from Arabidopsis a1 subfamily. Plant Physiology<br>and Biochemistry, 2012, 60, 223-232.                                                                | 2.8 | 12        |
| 30 | A seedling specific vegetative lectin gene is related to development inCicer arietinum. Physiologia<br>Plantarum, 2002, 114, 619-626.                                                                                       | 2.6 | 11        |
| 31 | ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in<br>Fabaceae and Asteraceae. BMC Plant Biology, 2012, 12, 207.                                                               | 1.6 | 11        |
| 32 | Subcellular location of Arabidopsis thaliana subfamily a1 β-galactosidases and developmental<br>regulation of transcript levelsÂofÂtheir coding genes. Plant Physiology and Biochemistry, 2016, 109,<br>137-145.            | 2.8 | 11        |
| 33 | Cell wall structure regulates the autolytic process throughout growth of Cicer arietinum epicotyls.<br>Physiologia Plantarum, 1991, 83, 659-663.                                                                            | 2.6 | 10        |
| 34 | Effect of low temperature storage and ethylene removal on ripening and gene expression changes in avocado fruit. Postharvest Biology and Technology, 1994, 4, 331-342.                                                      | 2.9 | 10        |
| 35 | Remodelling Pectin Structure In Potato. Developments in Plant Genetics and Breeding, 2000, 6, 245-256.                                                                                                                      | 0.6 | 10        |
| 36 | βIII-Gal is Involved in Galactan Reduction During Phloem Element Differentiation in Chickpea Stems.<br>Plant and Cell Physiology, 2013, 54, 960-970.                                                                        | 1.5 | 10        |

Berta Dopico

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abscisic acid delays chickpea germination by inhibiting water uptake and down-regulating genes encoding cell wall remodelling proteins. Plant Growth Regulation, 2010, 61, 175-183.                                               | 1.8 | 8         |
| 38 | The immunolocation of XTH1 in embryonic axes during chickpea germination and seedling growth confirms its function in cell elongation and vascular differentiation. Journal of Experimental Botany, 2010, 61, 4231-4238.          | 2.4 | 8         |
| 39 | The βlâ€galactosidase of <i>Cicer arietinum</i> is located in thickened cell walls such as those of collenchyma, sclerenchyma and vascular tissue. Plant Biology, 2011, 13, 777-783.                                              | 1.8 | 8         |
| 40 | Three members of Medicago truncatula ST family are ubiquitous during development and modulated by nutritional status (MtST1) and dehydration (MtST2 and MtST3). BMC Plant Biology, 2017, 17, 117.                                 | 1.6 | 8         |
| 41 | Knockout mutants of Arabidopsis thaliana β-galactosidase. Modifications in the cell wall saccharides and enzymatic activities. Biologia Plantarum, 2018, 62, 80-88.                                                               | 1.9 | 8         |
| 42 | Expression of a novel chickpea Rab-GDI cDNA mainly in seedlings. Plant Physiology and Biochemistry, 2001, 39, 363-366.                                                                                                            | 2.8 | 7         |
| 43 | Increased expression of two cDNAs encoding metallothionein-like proteins during growth of Cicer<br>arietinum epicotyls. Physiologia Plantarum, 1998, 104, 273-279.                                                                | 2.6 | 6         |
| 44 | Three members of Medicago truncatula ST family (MtST4, MtST5 and MtST6) are specifically induced by hormones involved in biotic interactions. Plant Physiology and Biochemistry, 2018, 127, 496-505.                              | 2.8 | 6         |
| 45 | Characterization, Hydrolytic Activity and Variations throughout Growth of a Cell Wall $\hat{l}^2$ -Glucosidase and a-Galactosidase from Cicer arietinum epicotyls. Journal of Plant Physiology, 1991, 137, 477-482.               | 1.6 | 5         |
| 46 | Coordinated action of βâ€galactosidases in the cell wall of embryonic axes during chickpea germination<br>and seedling growth. Plant Biology, 2014, 16, 404-410.                                                                  | 1.8 | 5         |
| 47 | Promoter activity of genes encoding the Specific Tissue protein family in the reproductive organs of<br>Medicago truncatula. Biologia Plantarum, 0, 63, 785-796.                                                                  | 1.9 | 4         |
| 48 | Effect of osmotic stress on the growth of epicotyls of Cicer arietinum in relation to changes in the autolytic process and glycanhydrolytic cell wall enzymes. Physiologia Plantarum, 1993, 87, 544-551.                          | 2.6 | 4         |
| 49 | The expression of a newCicer arietinum cDNA, encoding a glutamic acid-rich protein, is related to development. Journal of Plant Physiology, 2002, 159, 1375-1381.                                                                 | 1.6 | 3         |
| 50 | Organ accumulation and subcellular location of Cicer arietinum ST1 protein. Plant Science, 2014, 224, 44-53.                                                                                                                      | 1.7 | 3         |
| 51 | Specific tissue proteins 1 and 6 are involved in root biology during normal development and under symbiotic and pathogenic interactions in Medicago truncatula. Planta, 2021, 253, 7.                                             | 1.6 | 3         |
| 52 | Overexpression of Cicer arietinum βIII-Gal but not βIV-Gal in arabidopsis causes a reduction of cell wall<br>β-(1,4)-galactan compensated by an increase in homogalacturonan. Journal of Plant Physiology, 2018,<br>231, 135-146. | 1.6 | 2         |
| 53 | Effect of osmotic stress on the growth of epicotyls of Cicer arietinum in relation to changes in cell wall composition. Physiologia Plantarum, 1993, 87, 552-560.                                                                 | 2.6 | 2         |
| 54 | Characterization of a cell wall beta-galactosidase of Cicer arietinum epicotyls involved in cell wall autolysis. Physiologia Plantarum, 1990, 80, 629-635.                                                                        | 2.6 | 1         |