
Malcolm A Kelland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8280167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	History of the Development of Low Dosage Hydrate Inhibitors. Energy & Fuels, 2006, 20, 825-847.	2.5	899
2	Production Chemicals for the Oil and Gas Industry. , 0, , .		317
3	Kinetic Hydrate Inhibitor Studies for Gas Hydrate Systems: A Review of Experimental Equipment and Test Methods. Energy & Fuels, 2016, 30, 10015-10028.	2.5	151
4	Production Chemicals for the Oil and Gas Industry. , 0, , .		151
5	Tetra(iso-hexyl)ammonium Bromide—The Most Powerful Quaternary Ammonium-Based Tetrahydrofuran Crystal Growth Inhibitor and Synergist with Polyvinylcaprolactam Kinetic Gas Hydrate Inhibitor. Energy & Fuels, 2012, 26, 1160-1168.	2.5	109
6	An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure II gas hydrate. Chemical Engineering Science, 2010, 65, 5366-5372.	1.9	98
7	A New Class of Kinetic Hydrate Inhibitor. Annals of the New York Academy of Sciences, 2000, 912, 281-293.	1.8	97
8	A Study of the Kinetic Hydrate Inhibitor Performance and Seawater Biodegradability of a Series of Poly(2-alkyl-2-oxazoline)s. Energy & Fuels, 2009, 23, 3665-3673.	2.5	93
9	Study of the Kinetic Hydrate Inhibitor Performance of a Series of Poly(<i>N</i> -alkyl- <i>N</i> -vinylacetamide)s. Energy & Fuels, 2010, 24, 6400-6410.	2.5	93
10	A Review of Kinetic Hydrate Inhibitors from an Environmental Perspective. Energy & Fuels, 2018, 32, 12001-12012.	2.5	92
11	Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle <i>Rhagium mordax</i> . Energy & Fuels, 2014, 28, 3666-3672.	2.5	90
12	Class of Kinetic Hydrate Inhibitors with Good Biodegradability. Energy & Fuels, 2008, 22, 3143-3149.	2.5	89
13	Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. Chemical Engineering Science, 2014, 107, 1-12.	1.9	87
14	Poly(<i>N</i> -vinyl azacyclooctanone): A More Powerful Structure II Kinetic Hydrate Inhibitor than Poly(<i>N</i> -vinyl caprolactam). Energy & Fuels, 2012, 26, 4481-4485.	2.5	83
15	Crystal growth inhibition of tetrahydrofuran hydrate with poly(N-vinyl piperidone) and other poly(N-vinyl lactam) homopolymers. Chemical Engineering Science, 2011, 66, 6555-6560.	1.9	82
16	Studies on some alkylamide surfactant gas hydrate anti-agglomerants. Chemical Engineering Science, 2006, 61, 4290-4298.	1.9	72
17	Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers. Journal of Petroleum Science and Engineering, 2009, 64, 1-10.	2.1	71
18	Investigation into the strength and source of the memory effect for cyclopentane hydrate. Chemical Engineering Science, 2013, 87, 133-140.	1.9	70

#	Article	IF	CITATIONS
19	Study of the Gas Hydrate Anti-agglomerant Performance of a Series of <i>n</i> -Alkyl-tri(<i>n</i> -butyl)ammonium Bromides. Energy & Fuels, 2013, 27, 1285-1292.	2.5	69
20	Studies on some zwitterionic surfactant gas hydrate anti-agglomerants. Chemical Engineering Science, 2006, 61, 4048-4059.	1.9	68
21	Effect of Various Cations on the Formation of Calcium Carbonate and Barium Sulfate Scale with and without Scale Inhibitors. Industrial & Engineering Chemistry Research, 2011, 50, 5852-5861.	1.8	67
22	Feasibility Study for the Use of Kinetic Hydrate Inhibitors in Deep-Water Drilling Fluids. Energy & Fuels, 2008, 22, 2405-2410.	2.5	63
23	Exploring Kinetic Hydrate Inhibitor Test Methods and Conditions Using a Multicell Steel Rocker Rig. Energy & Fuels, 2013, 27, 2536-2547.	2.5	58
24	Tetrahydrofuran hydrate crystal growth inhibition by hyperbranched poly(ester amide)s. Chemical Engineering Science, 2009, 64, 3197-3200.	1.9	54
25	Missing Poly(<i>N</i> -vinyl lactam) Kinetic Hydrate Inhibitor: High-Pressure Kinetic Hydrate Inhibition of Structure II Gas Hydrates with Poly(<i>N</i> -vinyl piperidone) and Other Poly(<i>N</i> -vinyl lactam) Homopolymers. Energy & Fuels, 2011, 25, 4595-4599.	2.5	53
26	An investigation into the laboratory method for the evaluation of the performance of kinetic hydrate inhibitors using superheated gas hydrates. Chemical Engineering Science, 2011, 66, 1973-1985.	1.9	52
27	Tetrahydrofuran Hydrate Crystal Growth Inhibition by Trialkylamine Oxides and Synergism with the Gas Kinetic Hydrate Inhibitor Poly(N-vinyl caprolactam). Energy & Fuels, 2012, 26, 4454-4464.	2.5	52
28	Crystal growth inhibition of tetrahydrofuran hydrate with bis- and polyquaternary ammonium salts. Chemical Engineering Science, 2012, 69, 483-491.	1.9	51
29	The Missing Lactam-Thermoresponsive and Biocompatible Poly(<i>N</i> -vinylpiperidone) Polymers by Xanthate-Mediated RAFT Polymerization. Macromolecules, 2011, 44, 886-893.	2.2	50
30	Kinetic Hydrate Inhibition of Poly(<i>N</i> -isopropylacrylamide)s with Different Tacticities. Energy & Fuels, 2012, 26, 4961-4967.	2.5	49
31	Overview of the Synthesis of Salts of Organophosphonic Acids and Their Application to the Management of Oilfield Scale. Energy & Fuels, 2017, 31, 4603-4615.	2.5	49
32	THF hydrate crystal growth inhibition with small anionic organic compounds and their synergistic properties with the kinetic hydrate inhibitor poly(N-vinylcaprolactam). Chemical Engineering Science, 2011, 66, 2050-2056.	1.9	46
33	Study on Various Readily Available Proteins as New Green Scale Inhibitors for Oilfield Scale Control. Energy & Fuels, 2017, 31, 5940-5947.	2.5	45
34	Formation of three-vertex metallaboranes from monoborane precursors: X-ray crystal structures of the molybdenum and ruthenium complexes [Mo(η-C5H5)2H(̷2-B2H5)] and [Ru(η-C5Me5)(PMe3)(η2-B2H7)]. Journal of the Chemical Society Chemical Communications, 1988, .	2.0	44
35	Kinetic Hydrate Inhibition with <i>N</i> -Alkyl- <i>N</i> -vinylformamide Polymers: Comparison of Polymers to <i>n</i> -Propyl and Isopropyl Groups. Energy & Fuels, 2015, 29, 4941-4946.	2.5	44
36	Synthesis and Evaluation of New Bisphosphonates as Inhibitors for Oilfield Carbonate and Sulfate Scale Control. Energy & Fuels, 2016, 30, 9329-9338.	2.5	44

#	Article	IF	CITATIONS
37	Breakthrough in Synergists for Kinetic Hydrate Inhibitor Polymers, Hexaalkylguanidinium Salts: Tetrahydrofuran Hydrate Crystal Growth Inhibition and Synergism with Polyvinylcaprolactam. Energy & Fuels, 2013, 27, 711-716.	2.5	42
38	Does the Cloud Point Temperature of a Polymer Correlate with Its Kinetic Hydrate Inhibitor Performance?. Energy & amp; Fuels, 2019, 33, 7127-7137.	2.5	40
39	Kinetic Hydrate Inhibition at Pressures up to 760 Bar in Deep Water Drilling Fluids. Energy & Fuels, 2010, 24, 3003-3013.	2.5	39
40	Effect of Polymer Tacticity on the Performance of Poly(<i>N</i> , <i>N</i> -dialkylacrylamide)s as Kinetic Hydrate Inhibitors. Energy & Fuels, 2010, 24, 2554-2562.	2.5	39
41	A new class of hyperbranched polymeric scale inhibitors. Journal of Petroleum Science and Engineering, 2012, 94-95, 66-72.	2.1	38
42	Study of the Kinetic Hydrate Inhibitor Performance of Poly(<i>N</i> -vinylcaprolactam) and poly(<i>N</i> -isopropylmethacrylamide) with Varying End Caps. Energy & Fuels, 2018, 32, 9211-9219.	2.5	38
43	Solvent Synergists for Improved Kinetic Hydrate Inhibitor Performance of Poly(<i>N</i> -vinylcaprolactam). Energy & Fuels, 2020, 34, 1653-1663.	2.5	38
44	First Investigation of the Kinetic Hydrate Inhibitor Performance of Poly(<i>N</i> -alkylglycine)s. Energy & Fuels, 2014, 28, 6889-6896.	2.5	37
45	Environmentally Friendly Phosphonated Polyetheramine Scale Inhibitors—Excellent Calcium Compatibility for Oilfield Applications. Industrial & Engineering Chemistry Research, 2020, 59, 9808-9818.	1.8	37
46	Dual Kinetic Hydrate Inhibition and Scale Inhibition by Polyaspartamides. Energy & Fuels, 2011, 25, 5165-5172.	2.5	36
47	Poly(vinylalkanamide)s as Kinetic Hydrate Inhibitors: Comparison of Poly(<i>N</i> -vinylisobutyramide) with Poly(<i>N</i> -isopropylacrylamide). Energy & Fuels, 2013, 27, 183-188.	2.5	36
48	Comparison of Kinetic Hydrate Inhibitor Performance on Structure I and Structure II Hydrate-Forming Gases for a Range of Polymer Classes. Energy & Fuels, 2018, 32, 342-351.	2.5	36
49	<i>N</i> -Alkyl Methacrylamide Polymers as High Performing Kinetic Hydrate Inhibitors. Energy & Fuels, 2019, 33, 4190-4201.	2.5	36
50	Review of Nanotechnology Impacts on Oilfield Scale Management. ACS Applied Nano Materials, 2020, 3, 7343-7364.	2.4	36
51	Gas Hydrate and Corrosion Inhibition Performance of the Newly Synthesized Polyurethanes: Potential Dual Function Inhibitors. Energy & Fuels, 2021, 35, 6113-6124.	2.5	36
52	First Investigation of the Kinetic Hydrate Inhibitor Performance of Polymers of Alkylated <i>N</i> -Vinyl Pyrrolidones. Energy & Fuels, 2013, 27, 3730-3735.	2.5	35
53	First Investigation of the Kinetic Hydrate Inhibition of a Series of Poly(β-peptoid)s on Structure II Gas Hydrate, Including the Comparison of Block and Random Copolymers. Energy & Fuels, 2015, 29, 695-701.	2.5	35
54	<i>N</i> , <i>N</i> -Dimethylhydrazidoacrylamides. Part 2: High-Cloud-Point Kinetic Hydrate Inhibitor Copolymers with <i>N</i> - Vinylcaprolactam and Effect of pH on Performance. Energy & Fuels, 2015, 29, 678-685.	2.5	35

#	Article	IF	CITATIONS
55	Investigation of Solvent Synergists for Improved Kinetic Hydrate Inhibitor Performance of Poly(<i>N</i> -isopropyl methacrylamide). Energy & Fuels, 2019, 33, 8231-8240.	2.5	35
56	Non-Amide Kinetic Hydrate Inhibitors: Performance of a Series of Polymers of Isopropenyloxazoline on Structure II Gas Hydrates. Energy & Fuels, 2013, 27, 3154-3160.	2.5	34
57	Nonpolymeric Kinetic Hydrate Inhibitors: Alkylated Ethyleneamine Oxides. Energy & Fuels, 2015, 29, 6347-6354.	2.5	34
58	Carbamate Polymers as Kinetic Hydrate Inhibitors. Energy & Fuels, 2016, 30, 8134-8140.	2.5	34
59	Poly(alkyl ethylene phosphonate)s: A New Class of Non-amide Kinetic Hydrate Inhibitor Polymers. Energy & Fuels, 2017, 31, 3843-3848.	2.5	34
60	Optimizing the Kinetic Hydrate Inhibition Performance of <i>N</i> -Alkyl- <i>N</i> -vinylamide Copolymers. Energy & Fuels, 2018, 32, 4925-4931.	2.5	34
61	Synthesis and Characterization of Modified Aliphatic Polycarbonates as Environmentally Friendly Oilfield Scale Inhibitors. Energy & Fuels, 2018, 32, 6746-6755.	2.5	33
62	Can cyclopentane hydrate formation be used to rank the performance of kinetic hydrate inhibitors?. Chemical Engineering Science, 2012, 82, 177-184.	1.9	32
63	Kinetic Hydrate Inhibition of Poly(<i>N</i> -isopropylmethacrylamide)s with Different Tacticities. Energy & Fuels, 2012, 26, 3577-3585.	2.5	32
64	Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into N-vinyl lactam copolymers. Chemical Engineering Science, 2013, 102, 424-431.	1.9	31
65	Tris(tert-heptyl)-N-alkyl-1-ammonium bromides—Powerful THF hydrate crystal growth inhibitors and their synergism with poly-vinylcaprolactam kinetic gas hydrate inhibitor. Chemical Engineering Science, 2016, 144, 275-282.	1.9	31
66	<i>N</i> , <i>N</i> -Dimethylhydrazidoacrylamides. Part 1: Copolymers with <i>N</i> -Isopropylacrylamide as Novel High-Cloud-Point Kinetic Hydrate Inhibitors. Energy & Fuels, 2014, 28, 5714-5720.	2.5	30
67	Non-amide kinetic hydrate inhibitors: A review. Fuel, 2022, 315, 123179.	3.4	28
68	Study on the Synergistic Properties of Quaternary Phosphonium Bromide Salts with <i>N</i> -Vinylcaprolactam Based Kinetic Hydrate Inhibitor Polymers. Energy & Fuels, 2014, 28, 6803-6810.	2.5	27
69	Study of the Gas Hydrate Antiagglomerant Performance of a Series of Mono- and Bis-amine Oxides: Dual Antiagglomerant and Kinetic Hydrate Inhibition Behavior. Energy & Fuels, 2018, 32, 1674-1684.	2.5	27
70	Terminal substitution and cage incorporation of an η-cyclopentadienyl ring into borane cage structures; crystal structures of [Mo (η-C5H5)(η5:η1-C5H4)B4H7] and [Mo(η-C5H5)(η3:η2-C3H3)C2B9H9]. Journ of the Chemical Society Chemical Communications, 1989, , 1397-1399.	al2.0	26
71	Tris(dialkylamino)cyclopropenium chlorides: Tetrahydrofuran hydrate crystal growth inhibition and synergism with polyvinylcaprolactam as gas hydrate kinetic inhibitor. Chemical Engineering Science, 2013, 93, 423-428.	1.9	26
72	Fluorinated Quaternary Ammonium Bromides: Studies on Their Tetrahydrofuran Hydrate Crystal Growth Inhibition and as Synergists with Polyvinylcaprolactam Kinetic Gas Hydrate Inhibitor. Energy & Fuels, 2013, 27, 5175-5181.	2.5	26

#	Article	IF	CITATIONS
73	The first kinetic hydrate inhibition investigation on fluorinated polymers: Poly(fluoroalkylacrylamide)s. Chemical Engineering Science, 2014, 119, 230-235.	1.9	26
74	Acylamide and Amine Oxide Derivatives of Linear and Hyperbranched Polyethylenimines. Part 1: Comparison of Tetrahydrofuran Hydrate Crystal Growth Inhibition Performance. Energy & Fuels, 2016, 30, 3934-3940.	2.5	26
75	Ranking of kinetic hydrate inhibitors using a high pressure differential scanning calorimeter. Chemical Engineering Science, 2018, 183, 30-36.	1.9	26
76	Synthesis and Study of Modified Polyaspartic Acid Coupled Phosphonate and Sulfonate Moieties As Green Oilfield Scale Inhibitors. Industrial & Engineering Chemistry Research, 2021, 60, 8331-8339.	1.8	26
77	<i>N</i> , <i>N</i> -Dimethylhydrazidoacrylamides. Part 3: Improving Kinetic Hydrate Inhibitor Performance Using Polymers of <i>N</i> , <i>N</i> -Dimethylhydrazidomethacrylamide. Energy & Fuels, 2015, 29, 7923-7930.	2.5	25
78	As Green As It Gets: An Abundant Kinetic Hydrate Inhibitor from Nature. Energy & Fuels, 2018, 32, 5772-5778.	2.5	25
79	Investigation of the Kinetic Hydrate Inhibitor Performance of a Series of Copolymers of <i>N</i> -Vinyl Azacyclooctanone on Structure II Gas Hydrate. Energy & Fuels, 2013, 27, 1314-1320.	2.5	24
80	Improving the Kinetic Hydrate Inhibition Performance of 3-Methylene-2-pyrrolidone Polymers by N-Alkylation, Ring Expansion, and Copolymerization. Energy & Fuels, 2018, 32, 12337-12344.	2.5	23
81	A Study of Natural Proteins and Partially Hydrolyzed Derivatives as Green Kinetic Hydrate Inhibitors. Energy & Fuels, 2018, 32, 9349-9357.	2.5	23
82	Sulfonated Nonpolymeric Aminophosphonate Scale Inhibitors—Improving the Compatibility and Biodegradability. Energy & Fuels, 2019, 33, 6197-6204.	2.5	23
83	Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments. Molecules, 2020, 25, 5664.	1.7	23
84	Acylamide and Amine Oxide Derivatives of Linear and Hyperbranched Polyethylenimine. Part 2: Comparison of Gas Kinetic Hydrate Inhibition Performance. Energy & Fuels, 2016, 30, 5665-5671.	2.5	22
85	First investigation of modified poly(2-vinyl-4,4-dimethylazlactone)s as kinetic hydrate inhibitors. Chemical Engineering Science, 2016, 152, 248-254.	1.9	22
86	Comparison of the Kinetic Hydrate Inhibition Performance of Block and Statistical <i>N</i> -Alkylacrylamide Copolymers. Energy & Fuels, 2017, 31, 1355-1361.	2.5	22
87	Study of Novel Aromatic Aminomethylenephosphonates as Oilfield Scale Inhibitors. Energy & Fuels, 2019, 33, 228-237.	2.5	22
88	Systematic Study of Polyglyoxylamides as Powerful, High-Cloud-Point Kinetic Hydrate Inhibitors. Energy & Fuels, 2019, 33, 2067-2075.	2.5	21
89	Kinetic Hydrate Inhibitors: Structure–Activity Relationship Studies on a Series of Branched Poly(ethylene citramide)s with Varying Lipophilic Groups. Energy & Fuels, 2015, 29, 4774-4782.	2.5	20
90	Non-Amide Kinetic Hydrate Inhibitors: Investigation of the Performance of a Series of Poly(vinylphosphonate) Diesters. Energy & Fuels, 2015, 29, 2336-2341.	2.5	19

#	Article	IF	CITATIONS
91	Polymers of <i>N</i> -(Pyrrolidin-1-yl)methacrylamide as High Cloud Point Kinetic Hydrate Inhibitors. Energy & Fuels, 2018, 32, 10639-10648.	2.5	19
92	Can cyclopentane hydrate formation be used to screen the performance of surfactants as LDHI anti-agglomerants at atmospheric pressure?. Chemical Engineering Science, 2016, 152, 746-753.	1.9	18
93	Designing Kinetic Hydrate Inhibitors—Eight Projects With Only Partial Success, But Some Lessons Learnt. Energy & Fuels, 2017, 31, 5046-5054.	2.5	18
94	High-Throughput Testing of Kinetic Hydrate Inhibitors. Energy & Fuels, 2016, 30, 5432-5438.	2.5	17
95	Synergism of <i>tert</i> -Heptylated Quaternary Ammonium Salts with Poly(<i>N</i> -vinyl) Tj ETQq1 1 0.784314 2018, 32, 4841-4849.	ł rgBT /Ov 2.5	erlock 10 Tf 5 17
96	Synthesis of small nido-ferrapentaboranes; a novel borane-capped nido-diferrapentaborane. Journal of the Chemical Society Chemical Communications, 1990, , 1234.	2.0	16
97	Inhibition of tetrahydrofuran hydrate crystal growth by tetraalkylphosphonium salts—superior performance to equivalent tetraalkylammonium salts. Chemical Engineering Science, 2013, 98, 12-16.	1.9	16
98	Amine <i>N</i> -Oxide Kinetic Hydrate Inhibitor Polymers for High-Salinity Applications. Energy & Fuels, 2020, 34, 6298-6305.	2.5	16
99	Synthesis and Antiscaling Evaluation of Novel Hydroxybisphosphonates for Oilfield Applications. ACS Omega, 2021, 6, 6488-6497.	1.6	16
100	Polyvinylsulfonamides as Kinetic Hydrate Inhibitors. Energy & Fuels, 2020, 34, 2230-2237.	2.5	15
101	Non-amide based zwitterionic poly(sulfobetaine methacrylate)s as kinetic hydrate inhibitors. Chemical Engineering Science, 2021, 229, 116031.	1.9	15
102	A new investigation of polymaleamides as kinetic hydrate inhibitors – Improved performance and compatibility with high salinity brines. Chemical Engineering Science, 2021, 241, 116719.	1.9	15
103	Kinetic inhibition performance of alkylated polyamine oxides on structure I methane hydrate. Chemical Engineering Science, 2020, 220, 115652.	1.9	14
104	Additives for Kinetic Hydrate Inhibitor Formulations To Avoid Polymer Fouling at High Injection Temperatures: Part 1. A Review of Possible Methods. Energy & Fuels, 2020, 34, 2643-2653.	2.5	14
105	Tuning the thermoresponsive properties of hyperbranched poly(ester amide)s based on diisopropanolamine and cyclic dicarboxylic anhydrides. Journal of Applied Polymer Science, 2011, 121, 2282-2290.	1.3	13
106	Tetrahydrofuran hydrate crystal growth inhibition by bis-and tris-amine oxides. Chemical Engineering Science, 2013, 98, 1-6.	1.9	13
107	First Study of Poly(3-methylene-2-pyrrolidone) as a Kinetic Hydrate Inhibitor. Energy & Fuels, 2017, 31, 13572-13577.	2.5	13
108	Kidney Stone Prevention: Dynamic Testing of Edible Calcium Oxalate Scale Inhibitors. Crystal Growth and Design, 2018, 18, 7441-7450.	1.4	13

#	Article	IF	CITATIONS
109	Synthesis and Interconversion of Some Small Ruthenaboranes: Reaction of a Ruthenium Borohydride with Pentaborane(9) to Form Larger Ruthenaboranes. Organometallics, 2007, 26, 4031-4037.	1.1	12
110	Synthesis of Thermosensitive Poly(<i>N</i> -vinylamide) Derivatives Bearing Oligo Ethylene Glycol Chain for Kinetic Hydrate Inhibitor. Macromolecules, 2018, 51, 7845-7852.	2.2	12
111	Hydrophobic hydration affects growth of clathrate hydrate: insight from an NMR relaxometric and calorimetric study. Chemical Communications, 2019, 55, 2936-2939.	2.2	12
112	High Cloud Point Polyvinylaminals as Non-Amide-Based Kinetic Gas Hydrate Inhibitors. Energy & Fuels, 2020, 34, 8301-8307.	2.5	12
113	Antiscaling Evaluation and Quantum Chemical Studies of Nitrogen-Free Organophosphorus Compounds for Oilfield Scale Management. Industrial & Engineering Chemistry Research, 2021, 60, 12175-12188.	1.8	12
114	Powerful Synergy of Acetylenic Diol Surfactants with Kinetic Hydrate Inhibitor Polymers—Choosing the Correct Synergist Aqueous Solubility. Energy & Fuels, 0, , .	2.5	12
115	Investigation of the Antiscaling Performance of Phosphonated Chitosan for Upstream Petroleum Industry Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 16494-16505.	3.2	12
116	Novel Benchtop Wheel Loop for Low Dosage Gas Hydrate Inhibitor Screening: Comparison to Rocking Cells for a Series of Antiagglomerants. Journal of Chemical & Engineering Data, 2015, 60, 252-257.	1.0	11
117	Non-Amide Polymers as Kinetic Hydrate Inhibitors─Maleic Acid/Alkyl Acrylate Copolymers and the Effect of pH on Performance. ACS Omega, 2022, 7, 1404-1411.	1.6	11
118	Performance Enhancement of <i>N</i> -Vinylcaprolactam-Based Kinetic Hydrate Inhibitors by Synergism with Alkylated Guanidinium Salts. Energy & Fuels, 2016, 30, 4725-4732.	2.5	10
119	A Simple and Direct Route to High-Performance Acrylamido-Based Kinetic Gas Hydrate Inhibitors from Poly(acrylic acid). Energy & Fuels, 2020, 34, 6279-6287.	2.5	10
120	Reliability and Performance of Vinyl Lactam-Based Kinetic Hydrate Inhibitor Polymers after Treatment under a Range of Conditions. Energy & Fuels, 2021, 35, 1273-1280.	2.5	10
121	<i>N</i> -Oxide Polyethers as Kinetic Hydrate Inhibitors: Side Chain Ring Size Makes the Difference. Energy & Fuels, 2021, 35, 4067-4074.	2.5	10
122	Synthesis and Investigation of Polymers of 2-Methacrylamido-caprolactam as Kinetic Hydrate Inhibitors. Energy & Fuels, 2020, 34, 6981-6990.	2.5	10
123	<i>N</i> -Vinyl Caprolactam/Maleic-Based Copolymers as Kinetic Hydrate Inhibitors: The Effect of Internal Hydrogen Bonding. Energy & Fuels, 2022, 36, 3088-3096.	2.5	10
124	Partial incorporation of a cyclopentadienyl ligand into a molybdaborane to form a molybdacarbaborane. Journal of Organometallic Chemistry, 2006, 691, 1295-1297.	0.8	9
125	Tetrahydrofuran Hydrate Crystal Growth Inhibition with Synergistic Mixtures: Insight into Gas Hydrate Inhibition Mechanisms. Energy & Fuels, 2017, 31, 8109-8115.	2.5	9
126	Benchtop Euler Wheel for Kinetic Hydrate Inhibitor Screening: Comparison to Rocking Cells. Energy & Fuels, 2017, 31, 12004-12009.	2.5	9

#	Article	IF	CITATIONS
127	Dependence of the Kinetic Hydrate Inhibition Effect of Poly(<i>N</i> -vinylpyrrolidone) upon the Molecular Weight Is Influenced by Water Mobility in Millisecond Dynamics. Energy & Fuels, 2020, 34, 13664-13672.	2.5	9
128	Kinetic Inhibition of Clathrate Hydrate by Copolymers Based on <i>N</i> -Vinylcaprolactam and <i>N</i> -Acryloylpyrrolidine: Optimization Effect of Interfacial Nonfreezable Water of Polymers. Langmuir, 2022, 38, 1522-1532.	1.6	9
129	Exploring Modified Alendronic Acid as a New Inhibitor for Calcium-Based Oilfield Scales. Energy & Fuels, 2022, 36, 1863-1873.	2.5	9
130	Clathrate Hydrate Inhibition by Polyisocyanate with Diethylammonium Group. Langmuir, 2021, 37, 4147-4153.	1.6	8
131	Toward Separation and Characterization of Asphaltene Acid and Base Fractions. Energy & Fuels, 2021, 35, 14610-14617.	2.5	8
132	Further Investigation of Solvent Synergists for Improved Performance of Poly(N-vinylcaprolactam)-Based Kinetic Hydrate Inhibitors. Energy & Fuels, 0, , .	2.5	8
133	Pushing the Known Performance Envelope of Kinetic Hydrate Inhibitors─Powerful Synergy of Trialkylamine Oxides with Acrylamide-based Polymers. Energy & Fuels, 2022, 36, 341-349.	2.5	8
134	Metal fragment exchange from a molybdaborane to a tungstaborane. Journal of Organometallic Chemistry, 2005, 690, 4203-4205.	0.8	7
135	Kinetic Hydrate Inhibition of Glycyl-valine-Based Alternating Peptoids with Tailor-Made N-Substituents. Energy & Fuels, 2020, 34, 4849-4854.	2.5	7
136	Remarkable Effect on Thermosensitive Behavior Regarding Alkylation at the Amide Position of Poly(<i>N</i> -vinylamide)s. Chemistry Letters, 2016, 45, 589-591.	0.7	6
137	5-Methyl-3-vinyl-2-oxazolidinone–Investigations of a New Monomer for Kinetic Hydrate Inhibitor Polymers. Energy & Fuels, 2022, 36, 2609-2615.	2.5	5
138	Formation of ferraboranes from pentaborane(9) or BH3·thf and an electron-rich cyclopentadienyl iron phosphine hydride. Journal of Organometallic Chemistry, 2007, 692, 4147-4156.	0.8	4
139	Tetrahydrofuran Hydrate Crystal Growth Inhibitor Performance and Mechanism of Quaternary Ammonium and Phosphonium Salts. Crystal Growth and Design, 2020, 20, 5000-5005.	1.4	4
140	Additives for Kinetic Hydrate Inhibitor Formulations to Avoid Polymer Fouling at High Injection Temperatures: Part 2 - Experimental Studies with Denaturants, Osmolytes, Ionic Liquids, and Surfactants. Energy & Fuels, 2020, 34, 4544-4553.	2.5	4
141	Reactions of small boranes with ruthenium phosphine hydrides: Oligomerisation of monoborane-tetrahydrofuran to a nido-hexaruthenaborane. Journal of Organometallic Chemistry, 2006, 691, 2063-2068.	0.8	3
142	Alkyl-chain disorder in tetraisohexylammonium bromide. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o152-o155.	0.4	3
143	Alternative Lactam-Based Kinetic Hydrate Inhibitors─Investigation of Polymers of 2-Methacrylamido-caprolactam. Energy & Fuels, 2022, 36, 3107-3118.	2.5	3
144	Unraveling Amphiphilic Poly(<i>N</i> -vinylcaprolactam)/Water Interface by Nuclear Magnetic Resonance Relaxometry: Control of Clathrate Hydrate Formation Kinetics. Langmuir, 2022, 38, 4774-4784.	1.6	3

#	Article	IF	CITATIONS
145	Boronic and Organic Acids as Synergists for a Poly(<i>N</i> -vinylcaprolactam) Kinetic Hydrate Inhibitor. Energy & Fuels, 2022, 36, 333-340.	2.5	3
146	Nonpolymeric Citramide-Based Kinetic Hydrate Inhibitors: Good Performance with Just Six Alkylamide Groups. ACS Omega, 2022, 7, 13953-13962.	1.6	3
147	Preparation of poly(N-vinyl caprolactam) with various end groups using chain transfer agents and evaluation of their effects on kinetic hydrate inhibition. Polymer Bulletin, 2022, 79, 3513-3522.	1.7	2
148	Critical Growth Rate of Hydrate Crystal Growth Inhibitors in the Low Growth Rate Region. Crystal Growth and Design, 2021, 21, 4979-4985.	1.4	2
149	Phosphonated Lower-Molecular-Weight Polyethyleneimines as Oilfield Scale Inhibitors: An Experimental and Theoretical Study. Industrial & Engineering Chemistry Research, 2022, 61, 9586-9599.	1.8	2
150	Reactions of pentaborane(9) with electron-rich molybdenum and tungsten phosphine polyhydrides. Journal of Organometallic Chemistry, 2006, 691, 1934-1940.	0.8	1
151	A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds. Journal of Chemical Education, 2011, 88, 276-278.	1.1	1
152	Additives for Kinetic Hydrate Inhibitor Formulations to Avoid Polymer Fouling at High Injection Temperatures: Part 3. Experimental Studies with Added Polymers. Energy & Fuels, 2020, 34, 7038-7047.	2.5	1
153	An NMR study of some reactions of an arachno-molybdapentaborane: Formation of an unstable nido-molybdapentaborane. Inorganica Chimica Acta, 2008, 361, 495-501.	1.2	0
154	Design of a rigid side chain for poly(N â€vinylamide) derivatives bearing an alkenyl group and evaluation of their ability to inhibit tetrahydrofuran hydrate crystal growth. Journal of Applied Polymer Science, 2020, 137, 49154.	1.3	0
155	Advances in the Study of Gas Hydrates by Dielectric Spectroscopy. Molecules, 2021, 26, 4459.	1.7	0
156	Structural studies of halide hexaalkylguanidinium salts. Journal of Molecular Structure, 2022, 1265, 133338.	1.8	0