Jonathan S Marvin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279599/publications.pdf

Version: 2024-02-01

293460 406436 5,646 36 24 35 citations g-index h-index papers 50 50 50 7510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. ELife, 2022, 11 , .	2.8	14
2	Three Mutations Convert the Selectivity of a Protein Sensor from Nicotinic Agonists to S-Methadone for Use in Cells, Organelles, and Biofluids. Journal of the American Chemical Society, 2022, 144, 8480-8486.	6.6	6
3	InÂvivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Reports, 2021, 35, 109284.	2.9	24
4	The functional organization of excitatory synaptic input to place cells. Nature Communications, 2021, 12, 3558.	5.8	22
5	Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell, 2020, 183, 1986-2002.e26.	13.5	104
6	Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. Nano Letters, 2020, 20, 4073-4083.	4.5	18
7	jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths. Nature Methods, 2020, 17, 694-697.	9.0	45
8	Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. ELife, 2020, 9, .	2.8	37
9	Kilohertz frame-rate two-photon tomography. Nature Methods, 2019, 16, 778-786.	9.0	122
10	A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nature Methods, 2019, 16, 763-770.	9.0	242
11	Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nature Methods, 2019, 16, 615-618.	9.0	71
12	Quantitative <i>in vivo</i> imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. Journal of Neuroscience Research, 2019, 97, 946-960.	1.3	67
13	Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ. Nature Communications, 2019, 10, 1414.	5.8	66
14	Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. Journal of General Physiology, 2019, 151, 738-757.	0.9	50
15	A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nature Communications, 2019, 10, 711.	5.8	185
16	Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum. Frontiers in Cellular Neuroscience, 2019, 13, 499.	1.8	14
17	Microscopy Using Fluorescent Drug Biosensors for "Inside-Out Pharmacology― Biophysical Journal, 2018, 114, 358a.	0.2	2
18	Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nature Methods, 2018, 15, 936-939.	9.0	310

#	Article	IF	CITATIONS
19	Falling apart. ELife, 2016, 5, .	2.8	O
20	Role of Adaptor TrfA and ClpPC in Controlling Levels of SsrA-Tagged Proteins and Antitoxins in Staphylococcus aureus. Journal of Bacteriology, 2014, 196, 4140-4151.	1.0	29
21	Conditions and Constraints for Astrocyte Calcium Signaling in the Hippocampal Mossy Fiber Pathway. Neuron, 2014, 82, 413-429.	3.8	206
22	An optimized fluorescent probe for visualizing glutamate neurotransmission. Nature Methods, 2013, 10, 162-170.	9.0	827
23	Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience, $2013, 6, 2$.	1.4	629
24	Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina. Journal of Neuroscience, 2013, 33, 10972-10985.	1.7	181
25	Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging. Journal of Neuroscience, 2012, 32, 13819-13840.	1.7	1,099
26	Structure of the Escherichia coli Phosphonate Binding Protein PhnD and Rationally Optimized Phosphonate Biosensors. Journal of Molecular Biology, 2011, 414, 356-369.	2.0	60
27	A genetically encoded, highâ€signalâ€toâ€noise maltose sensor. Proteins: Structure, Function and Bioinformatics, 2011, 79, 3025-3036.	1.5	96
28	Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design. Journal of Biological Chemistry, 2009, 284, 6455-6464.	1.6	226
29	Engineering Human IgG1 Affinity to Human Neonatal Fc Receptor: Impact of Affinity Improvement on Pharmacokinetics in Primates. Journal of Immunology, 2009, 182, 7663-7671.	0.4	237
30	Crystal structures of the GCaMP calcium sensor protein reveal the mechanism of fluorescence signal change and aid rational design. FASEB Journal, 2009, 23, 517.1.	0.2	0
31	Bispecific antibodies for dual-modality cancer therapy: killing two signaling cascades with one stone. Current Opinion in Drug Discovery & Development, 2006, 9, 184-93.	1.9	6
32	Recombinant approaches to IgG-like bispecific antibodies. Acta Pharmacologica Sinica, 2005, 26, 649-658.	2.8	86
33	Manipulation of ligand binding affinity by exploitation of conformational coupling. , 2001, 8, 795-798.		137
34	Protein engineering and the development of generic biosensors. Trends in Biotechnology, 1998, 16, 183-189.	4.9	128
35	Engineering Biosensors by Introducing Fluorescent Allosteric Signal Transducers:Â Construction of a Novel Glucose Sensor. Journal of the American Chemical Society, 1998, 120, 7-11.	6.6	194
36	<i>In Vivo</i> Glucose Imaging in Multiple Model Organisms with an Engineered Single-Wavelength Sensor. SSRN Electronic Journal, 0, , .	0.4	2