Insuk So

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279476/publications.pdf

Version: 2024-02-01

233421 186265 2,363 45 84 28 citations h-index g-index papers 88 88 88 2394 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation. Journal of Cellular and Molecular Medicine, 2022, , .	3. 6	5
2	Plasma Membrane Localized GCaMP-MS4A12 by Orai1 Co-Expression Shows Thapsigargin- and Ca2+-Dependent Fluorescence Increases. Molecules and Cells, 2021, 44, 223-232.	2.6	O
3	Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. Korean Journal of Physiology and Pharmacology, 2020, 24, 101.	1.2	4
4	The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188336.	7.4	35
5	Structure–Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells, 2020, 9, 73.	4.1	10
6	TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118620.	4.1	21
7	TRP Channels as Emerging Therapeutic Targets for Neurodegenerative Diseases. Frontiers in Physiology, 2020, 11, 238.	2.8	19
8	Ca ²⁺ /calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain. Korean Journal of Physiology and Pharmacology, 2020, 24, 277-286.	1.2	2
9	The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit. Korean Journal of Physiology and Pharmacology, 2020, 24, 503-516.	1.2	1
10	Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Molecular Neurobiology, 2019, 56, 2822-2835.	4.0	20
11	Identification of phospholipase C \hat{l}^2 downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels. Korean Journal of Physiology and Pharmacology, 2019, 23, 357.	1.2	7
12	TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Archiv European Journal of Physiology, 2019, 471, 1045-1053.	2.8	18
13	Englerin A-sensing charged residues for transient receptor potential canonical 5 channel activation. Korean Journal of Physiology and Pharmacology, 2019, 23, 191.	1.2	4
14	The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity. Korean Journal of Physiology and Pharmacology, 2019, 23, 219.	1.2	5
15	Persistent Erectile Dysfunction after Discontinuation of 5-Alpha Reductase Inhibitor Therapy in Rats Depending on the Duration of Treatment. World Journal of Men?s Health, 2019, 37, 240.	3.3	11
16	Differential PI(4,5)P2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Scientific Reports, 2019, 9, 1849.	3.3	20
17	Palmitoylation controls trafficking of the intracellular Ca ²⁺ channel MCOLN3/TRPML3 to regulate autophagy. Autophagy, 2019, 15, 327-340.	9.1	50
18	Gαi-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Scientific Reports, 2018, 8, 3480.	3.3	15

#	Article	IF	CITATIONS
19	Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Archiv European Journal of Physiology, 2018, 470, 505-516.	2.8	7
20	Dual action of the $G\hat{1}$ ±q-PLC $\hat{1}$ 2-PI(4,5)P2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Scientific Reports, 2018, 8, 12117.	3.3	24
21	TGFβ1 induces stress fiber formation through upregulation of TRPC6 in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2017, 483, 129-134.	2.1	10
22	The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3′5′-monophosphate. Pflugers Archiv European Journal of Physiology, 2017, 469, 693-702.	2.8	6
23	Helix O modulates voltage dependency of CLC-1. Pflugers Archiv European Journal of Physiology, 2017, 469, 183-193.	2.8	2
24	Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s. Korean Journal of Physiology and Pharmacology, 2017, 21, 133.	1.2	14
25	Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5â€ŧrisphosphate receptors and Ca ²⁺ release. Journal of Physiology, 2016, 594, 2985-3004.	2.9	16
26	The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochemical and Biophysical Research Communications, 2016, 474, 476-481.	2.1	22
27	Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o. Biochemical Journal, 2016, 473, 1379-1390.	3.7	9
28	Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids. Pflugers Archiv European Journal of Physiology, 2016, 468, 551-561.	2.8	8
29	Prospective investigation of change in the prostate-specific antigens after various urologic procedures. Clinical Interventions in Aging, 2015, 10, 1213.	2.9	9
30	Functional effects of \hat{l}^2 3-adrenoceptor on pacemaker activity in interstitial cells of Cajal from the mouse colon. European Journal of Pharmacology, 2015, 754, 32-40.	3.5	9
31	Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain, 2015, 138, 3030-3047.	7.6	83
32	Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gî± _i in TRPC4 activation process. American Journal of Physiology - Cell Physiology, 2015, 308, C879-C889.	4.6	12
33	The traditional herbal medicine, Ge-Gen-Tang, inhibits pacemaker potentials by nitric oxide/cGMP dependent ATP-sensitive K+ channels in cultured interstitial cells of Cajal from mouse small intestine. Journal of Ethnopharmacology, 2015, 170, 201-209.	4.1	18
34	Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Archiv European Journal of Physiology, 2015, 467, 2081-2091.	2.8	6
35	The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels, 2015, 9, 186-195.	2.8	5
36	Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Archiv European Journal of Physiology, 2015, 467, 703-712.	2.8	20

#	Article	IF	CITATIONS
37	Gintoninâ€Mediated Depolarization of Pacemaker Activity in Cultured Interstitial Cells of Cajal. FASEB Journal, 2015, 29, 1002.3.	0.5	O
38	Electrophysiological Characteristics of Six Mutations in hClC-1 of Korean Patients with Myotonia Congenita. Molecules and Cells, 2014, 37, 202-212.	2.6	10
39	Identification of a Membrane-targeting Domain of the Transient Receptor Potential Canonical (TRPC)4 Channel Unrelated to Its Formation of a Tetrameric Structure. Journal of Biological Chemistry, 2014, 289, 34990-35002.	3.4	13
40	Molecular Determinants Mediating Gating of Transient Receptor Potential Canonical (TRPC) Channels by Stromal Interaction Molecule 1 (STIM1). Journal of Biological Chemistry, 2014, 289, 6372-6382.	3.4	80
41	Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells. Biochemical and Biophysical Research Communications, 2014, 447, 192-196.	2.1	12
42	Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 491-504.	2.8	32
43	The TRPCs–STIM1–Orai Interaction. Handbook of Experimental Pharmacology, 2014, 223, 1035-1054.	1.8	39
44	The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fìtoterapìâ, 2014, 97, 224-233.	2.2	101
45	Schisandrin B suppresses $TGF\hat{l}^21$ -induced stress fiber formation by inhibiting myosin light chain phosphorylation. Journal of Ethnopharmacology, 2014, 152, 364-371.	4.1	25
46	An essential role of PI(4,5)P2 for maintaining the activity of the transient receptor potential canonical (TRPC) $4\hat{l}^2$. Pflugers Archiv European Journal of Physiology, 2013, 465, 1011-1021.	2.8	24
47	Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca2+ signaling in Huntington's disease. Acta Neuropathologica, 2013, 125, 727-739.	7.7	48
48	Regulation of calcium influx and signaling pathway in cancer cells via TRPV6–Numb1 interaction. Cell Calcium, 2013, 53, 102-111.	2.4	28
49	Activation of TRPC4 \hat{l}^2 by G $\hat{l}\pm i$ subunit increases Ca2+ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Cell Calcium, 2013, 54, 307-319.	2.4	35
50	Selective Gαi Subunits as Novel Direct Activators of Transient Receptor Potential Canonical (TRPC)4 and TRPC5 Channels. Journal of Biological Chemistry, 2012, 287, 17029-17039.	3.4	85
51	The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels, 2012, 6, 333-343.	2.8	31
52	Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochemical and Biophysical Research Communications, 2012, 421, 105-111.	2.1	15
53	TRIP Database 2.0: A Manually Curated Information Hub for Accessing TRP Channel Interaction Network. PLoS ONE, 2012, 7, e47165.	2.5	23
54	Molecular determinants of PKA-dependent inhibition of TRPC5 channel. American Journal of Physiology - Cell Physiology, 2011, 301, C823-C832.	4.6	26

#	Article	IF	Citations
55	Properties of the TRPML3 Channel Pore and Its Stable Expansion by the Varitint-Waddler-causing Mutation. Journal of Biological Chemistry, 2010, 285, 16513-16520.	3.4	22
56	Fullerene Attachment Enhances Performance of a DNA Nanomachine. Advanced Materials, 2009, 21, 1907-1910.	21.0	48
57	DNA Hybrid Nanomachines: Fullerene Attachment Enhances Performance of a DNA Nanomachine (Adv.) Tj ETQq1	1.0.78431 21:0	4 rgBT /Ov
58	Macromol. Rapid Commun. 6/2009. Macromolecular Rapid Communications, 2009, 30, NA-NA.	3.9	O
59	Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells. Molecules and Cells, 2009, 27, 167-173.	2.6	10
60	The Ca ²⁺ Channel TRPML3 Regulates Membrane Trafficking and Autophagy. Traffic, 2009, 10, 1157-1167.	2.7	152
61	A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles. Chemistry of Materials, 2009, 21, 511-515.	6.7	79
62	A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO Journal, 2008, 27, 1197-1205.	7.8	92
63	Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochemical and Biophysical Research Communications, 2008, 365, 239-245.	2.1	17
64	The specific activation of TRPC4 by Gi protein subtype. Biochemical and Biophysical Research Communications, 2008, 377, 538-543.	2.1	33
65	A tough nanofiber hydrogel incorporating ferritin. Applied Physics Letters, 2008, 93, .	3.3	12
66	The effect of DNA on mechanical properties of nanofiber hydrogels. Applied Physics Letters, 2008, 93, .	3.3	6
67	Involvement of Phosphatidylinositol 4,5-Bisphosphate in the Desensitization of Canonical Transient Receptor Potential 5. Biological and Pharmaceutical Bulletin, 2008, 31, 1733-1738.	1.4	33
68	Gain-of-function Mutation in TRPML3 Causes the Mouse Varitint-Waddler Phenotype. Journal of Biological Chemistry, 2007, 282, 36138-36142.	3.4	102
69	Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes. Canadian Journal of Physiology and Pharmacology, 2007, 85, 1254-1262.	1.4	15
70	The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. Journal of Smooth Muscle Research, 2006, 42, 1-7.	1.2	35
71	Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1031-C1040.	4.6	39
72	Desensitization of canonical transient receptor potential channel 5 by protein kinase C. American Journal of Physiology - Cell Physiology, 2005, 289, C591-C600.	4.6	68

#	Article	IF	CITATION
73	TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Molecules and Cells, 2005, 20, 435-41.	2.6	43
74	Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig. Experimental and Molecular Medicine, 2003, 35, 46-52.	7.7	19
75	TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. American Journal of Physiology - Renal Physiology, 2003, 284, G604-G616.	3.4	124
76	Nonselective Cation Channels Activated by the Stimulation of Muscarinic Receptors in Mammalian Gastric Smooth Muscle Journal of Smooth Muscle Research, 2003, 39, 231-247.	1.2	33
77	The Properties of Carbachol-Activated Nonselective Cation Channels at the Single Channel Level in Guinea Pig Gastric Myocytes. The Japanese Journal of Pharmacology, 2001, 85, 291-298.	1.2	18
78	Ca2+influx through carbachol-activated non-selective cation channels in guinea-pig gastric myocytes. Journal of Physiology, 1998, 513, 749-760.	2.9	31
79	Protein kinase C mediates the desensitization of CCh-activated nonselective cationic current in guinea-pig gastric myocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 1-8.	2.8	30
80	Suppression of the carbachol-activated nonselective cationic current by antibody against alpha subunit of G o protein in guinea-pig gastric myocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 494-496.	2.8	40
81	Role of calmodulin in the activation of carbachol-activated cationic current in guinea-pig gastric antral myocytes. Pflugers Archiv European Journal of Physiology, 1995, 430, 757-762.	2.8	25
82	Quinidine blockade of the carbacholâ€activated nonselective cationic current in guineaâ€pig gastric myocytes. British Journal of Pharmacology, 1995, 115, 1407-1414.	5.4	23
83	ATP-sensitive potassium channels are modulated by intracellular lactate in rabbit ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1993, 425, 546-548.	2.8	44
84	Sodium-calcium exchange tail current in atrial myocytes of the rabbit — An index of subsarcolemmal calcium concentrations?. , 1992, , .		0