List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279476/publications.pdf Version: 2024-02-01

INCLE SO

#	Article	IF	CITATIONS
1	The Ca ²⁺ Channel TRPML3 Regulates Membrane Trafficking and Autophagy. Traffic, 2009, 10, 1157-1167.	2.7	152
2	TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. American Journal of Physiology - Renal Physiology, 2003, 284, G604-G616.	3.4	124
3	Gain-of-function Mutation in TRPML3 Causes the Mouse Varitint-Waddler Phenotype. Journal of Biological Chemistry, 2007, 282, 36138-36142.	3.4	102
4	The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fìtoterapìâ, 2014, 97, 224-233.	2.2	101
5	A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO Journal, 2008, 27, 1197-1205.	7.8	92
6	Selective Gαi Subunits as Novel Direct Activators of Transient Receptor Potential Canonical (TRPC)4 and TRPC5 Channels. Journal of Biological Chemistry, 2012, 287, 17029-17039.	3.4	85
7	Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain, 2015, 138, 3030-3047.	7.6	83
8	Molecular Determinants Mediating Gating of Transient Receptor Potential Canonical (TRPC) Channels by Stromal Interaction Molecule 1 (STIM1). Journal of Biological Chemistry, 2014, 289, 6372-6382.	3.4	80
9	A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles. Chemistry of Materials, 2009, 21, 511-515.	6.7	79
10	Desensitization of canonical transient receptor potential channel 5 by protein kinase C. American Journal of Physiology - Cell Physiology, 2005, 289, C591-C600.	4.6	68
11	Palmitoylation controls trafficking of the intracellular Ca ²⁺ channel MCOLN3/TRPML3 to regulate autophagy. Autophagy, 2019, 15, 327-340.	9.1	50
12	Fullerene Attachment Enhances Performance of a DNA Nanomachine. Advanced Materials, 2009, 21, 1907-1910.	21.0	48
13	Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca2+ signaling in Huntington's disease. Acta Neuropathologica, 2013, 125, 727-739.	7.7	48
14	ATP-sensitive potassium channels are modulated by intracellular lactate in rabbit ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1993, 425, 546-548.	2.8	44
15	TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Molecules and Cells, 2005, 20, 435-41.	2.6	43
16	Suppression of the carbachol-activated nonselective cationic current by antibody against alpha subunit of G o protein in guinea-pig gastric myocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 494-496.	2.8	40
17	Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1031-C1040.	4.6	39
18	The TRPCs–STIM1–Orai Interaction. Handbook of Experimental Pharmacology, 2014, 223, 1035-1054.	1.8	39

#	Article	IF	CITATIONS
19	The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. Journal of Smooth Muscle Research, 2006, 42, 1-7.	1.2	35
20	Activation of TRPC4β by Cαi subunit increases Ca2+ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Cell Calcium, 2013, 54, 307-319.	2.4	35
21	The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188336.	7.4	35
22	The specific activation of TRPC4 by Gi protein subtype. Biochemical and Biophysical Research Communications, 2008, 377, 538-543.	2.1	33
23	Involvement of Phosphatidylinositol 4,5-Bisphosphate in the Desensitization of Canonical Transient Receptor Potential 5. Biological and Pharmaceutical Bulletin, 2008, 31, 1733-1738.	1.4	33
24	Nonselective Cation Channels Activated by the Stimulation of Muscarinic Receptors in Mammalian Gastric Smooth Muscle Journal of Smooth Muscle Research, 2003, 39, 231-247.	1.2	33
25	Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 491-504.	2.8	32
26	Ca2+influx through carbachol-activated non-selective cation channels in guinea-pig gastric myocytes. Journal of Physiology, 1998, 513, 749-760.	2.9	31
27	The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels, 2012, 6, 333-343.	2.8	31
28	Protein kinase C mediates the desensitization of CCh-activated nonselective cationic current in guinea-pig gastric myocytes. Pflugers Archiv European Journal of Physiology, 1998, 436, 1-8.	2.8	30
29	Regulation of calcium influx and signaling pathway in cancer cells via TRPV6–Numb1 interaction. Cell Calcium, 2013, 53, 102-111.	2.4	28
30	Molecular determinants of PKA-dependent inhibition of TRPC5 channel. American Journal of Physiology - Cell Physiology, 2011, 301, C823-C832.	4.6	26
31	Role of calmodulin in the activation of carbachol-activated cationic current in guinea-pig gastric antral myocytes. Pflugers Archiv European Journal of Physiology, 1995, 430, 757-762.	2.8	25
32	Schisandrin B suppresses TGFβ1-induced stress fiber formation by inhibiting myosin light chain phosphorylation. Journal of Ethnopharmacology, 2014, 152, 364-371.	4.1	25
33	An essential role of PI(4,5)P2 for maintaining the activity of the transient receptor potential canonical (TRPC)4l². Pflugers Archiv European Journal of Physiology, 2013, 465, 1011-1021.	2.8	24
34	Dual action of the Gαq-PLCβ-PI(4,5)P2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Scientific Reports, 2018, 8, 12117.	3.3	24
35	Quinidine blockade of the carbacholâ€activated nonselective cationic current in guineaâ€pig gastric myocytes. British Journal of Pharmacology, 1995, 115, 1407-1414.	5.4	23
36	TRIP Database 2.0: A Manually Curated Information Hub for Accessing TRP Channel Interaction Network. PLoS ONE, 2012, 7, e47165.	2.5	23

#	Article	lF	CITATIONS
37	Properties of the TRPML3 Channel Pore and Its Stable Expansion by the Varitint-Waddler-causing Mutation. Journal of Biological Chemistry, 2010, 285, 16513-16520.	3.4	22
38	The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochemical and Biophysical Research Communications, 2016, 474, 476-481.	2.1	22
39	TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118620.	4.1	21
40	Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Archiv European Journal of Physiology, 2015, 467, 703-712.	2.8	20
41	Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Molecular Neurobiology, 2019, 56, 2822-2835.	4.0	20
42	Differential PI(4,5)P2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels. Scientific Reports, 2019, 9, 1849.	3.3	20
43	Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig. Experimental and Molecular Medicine, 2003, 35, 46-52.	7.7	19
44	TRP Channels as Emerging Therapeutic Targets for Neurodegenerative Diseases. Frontiers in Physiology, 2020, 11, 238.	2.8	19
45	The Properties of Carbachol-Activated Nonselective Cation Channels at the Single Channel Level in Guinea Pig Gastric Myocytes. The Japanese Journal of Pharmacology, 2001, 85, 291-298.	1.2	18
46	The traditional herbal medicine, Ge-Gen-Tang, inhibits pacemaker potentials by nitric oxide/cGMP dependent ATP-sensitive K+ channels in cultured interstitial cells of Cajal from mouse small intestine. Journal of Ethnopharmacology, 2015, 170, 201-209.	4.1	18
47	TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Archiv European Journal of Physiology, 2019, 471, 1045-1053.	2.8	18
48	Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochemical and Biophysical Research Communications, 2008, 365, 239-245.	2.1	17
49	Shear stress activates monovalent cation channel transient receptor potential melastatin subfamily 4 in rat atrial myocytes via type 2 inositol 1,4,5â€trisphosphate receptors and Ca ²⁺ release. Journal of Physiology, 2016, 594, 2985-3004.	2.9	16
50	Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes. Canadian Journal of Physiology and Pharmacology, 2007, 85, 1254-1262.	1.4	15
51	Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochemical and Biophysical Research Communications, 2012, 421, 105-111.	2.1	15
52	Gαi-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Scientific Reports, 2018, 8, 3480.	3.3	15
53	Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s. Korean Journal of Physiology and Pharmacology, 2017, 21, 133.	1.2	14
54	Identification of a Membrane-targeting Domain of the Transient Receptor Potential Canonical (TRPC)4 Channel Unrelated to Its Formation of a Tetrameric Structure. Journal of Biological Chemistry, 2014, 289, 34990-35002.	3.4	13

#	Article	IF	CITATIONS
55	A tough nanofiber hydrogel incorporating ferritin. Applied Physics Letters, 2008, 93, .	3.3	12
56	Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells. Biochemical and Biophysical Research Communications, 2014, 447, 192-196.	2.1	12
57	Close spatio-association of the transient receptor potential canonical 4 (TRPC4) channel with Gα _i in TRPC4 activation process. American Journal of Physiology - Cell Physiology, 2015, 308, C879-C889.	4.6	12
58	Persistent Erectile Dysfunction after Discontinuation of 5-Alpha Reductase Inhibitor Therapy in Rats Depending on the Duration of Treatment. World Journal of Men?s Health, 2019, 37, 240.	3.3	11
59	Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells. Molecules and Cells, 2009, 27, 167-173.	2.6	10
60	Electrophysiological Characteristics of Six Mutations in hClC-1 of Korean Patients with Myotonia Congenita. Molecules and Cells, 2014, 37, 202-212.	2.6	10
61	TGFβ1 induces stress fiber formation through upregulation of TRPC6 in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2017, 483, 129-134.	2.1	10
62	Structure–Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels. Cells, 2020, 9, 73.	4.1	10
63	Prospective investigation of change in the prostate-specific antigens after various urologic procedures. Clinical Interventions in Aging, 2015, 10, 1213.	2.9	9
64	Functional effects of β3-adrenoceptor on pacemaker activity in interstitial cells of Cajal from the mouse colon. European Journal of Pharmacology, 2015, 754, 32-40.	3.5	9
65	Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o. Biochemical Journal, 2016, 473, 1379-1390.	3.7	9
66	Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids. Pflugers Archiv European Journal of Physiology, 2016, 468, 551-561.	2.8	8
67	Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Archiv European Journal of Physiology, 2018, 470, 505-516.	2.8	7
68	Identification of phospholipase C Î ² downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels. Korean Journal of Physiology and Pharmacology, 2019, 23, 357.	1.2	7
69	The effect of DNA on mechanical properties of nanofiber hydrogels. Applied Physics Letters, 2008, 93, .	3.3	6
70	Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Archiv European Journal of Physiology, 2015, 467, 2081-2091.	2.8	6
71	The regulation of transient receptor potential canonical 4 (TRPC4) channel by phosphodiesterase 5 inhibitor via the cyclic guanosine 3â€25â€2-monophosphate. Pflugers Archiv European Journal of Physiology, 2017, 469, 693-702.	2.8	6
72	The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels, 2015, 9, 186-195.	2.8	5

#	Article	IF	CITATIONS
73	The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity. Korean Journal of Physiology and Pharmacology, 2019, 23, 219.	1.2	5
74	Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation. Journal of Cellular and Molecular Medicine, 2022, , .	3.6	5
75	Englerin A-sensing charged residues for transient receptor potential canonical 5 channel activation. Korean Journal of Physiology and Pharmacology, 2019, 23, 191.	1.2	4
76	Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4. Korean Journal of Physiology and Pharmacology, 2020, 24, 101.	1.2	4
77	Helix O modulates voltage dependency of CLC-1. Pflugers Archiv European Journal of Physiology, 2017, 469, 183-193.	2.8	2
78	Ca ²⁺ /calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain. Korean Journal of Physiology and Pharmacology, 2020, 24, 277-286.	1.2	2
79	The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit. Korean Journal of Physiology and Pharmacology, 2020, 24, 503-516.	1.2	1
80	Sodium-calcium exchange tail current in atrial myocytes of the rabbit — An index of subsarcolemmal calcium concentrations?. , 1992, , .		0
81	DNA Hybrid Nanomachines: Fullerene Attachment Enhances Performance of a DNA Nanomachine (Adv.) Tj ETQq1	1.0.7843 21:0	14 rgBT /Ov
82	Macromol. Rapid Commun. 6/2009. Macromolecular Rapid Communications, 2009, 30, NA-NA.	3.9	0
83	Plasma Membrane Localized GCaMP-MS4A12 by Orai1 Co-Expression Shows Thapsigargin- and Ca2+-Dependent Fluorescence Increases. Molecules and Cells, 2021, 44, 223-232.	2.6	0
84	Gintoninâ€Mediated Depolarization of Pacemaker Activity in Cultured Interstitial Cells of Cajal. FASEB Journal, 2015, 29, 1002.3.	0.5	0