
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279349/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΠΟΖΕΝ

#	Article	IF	CITATIONS
1	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	21.4	870
2	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
3	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	7.3	185
4	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	12.8	156
5	Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution, 2017, 1, 1931-1941.	7.8	145
6	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
7	Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 2018, 8, 6321.	3.3	138
8	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
9	Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7409-7418.	7.1	115
10	The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Communications, 2018, 9, 5213.	12.8	101
11	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	3.9	100
12	Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea. PLoS ONE, 2015, 10, e0141586.	2.5	95
13	Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019, 19, 45.	3.6	77
14	The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6003-6013.	7.1	75
15	A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics, 2019, 20, 420.	2.8	73
16	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	8.9	72
17	Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communications, 2021, 12, 7227.	12.8	58
18	Comparative genomics reveals unique woodâ€decay strategies and fruiting body development in the Schizophyllaceae. New Phytologist, 2019, 224, 902-915.	7.3	53

#	Article	IF	CITATIONS
19	Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances, 2021, 7, .	10.3	53
20	Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environmental Microbiology, 2021, 23, 5716-5732.	3.8	44
21	Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 2021, 230, 774-792.	7.3	37
22	Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus <i>Pycnoporus</i> . DNA Research, 2020, 27, .	3.4	32
23	Genome-wide role of codon usage on transcription and identification of potential regulators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
24	Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation. IMA Fungus, 2021, 12, 21.	3.8	23
25	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	7.3	23
26	Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroomâ€forming fungi. New Phytologist, 2022, 233, 2294-2309.	7.3	21
27	Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytologist, 2022, 233, 1383-1400.	7.3	19
28	IMITATION SWITCH is required for normal chromatin structure and gene repression in PRC2 target domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
29	Comparative Genomics of the Ectomycorrhizal Sister Species <i>Rhizopogon vinicolor</i> and <i>Rhizopogon vesiculosus</i> (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type <i>B</i> Locus. G3: Genes, Genomes, Genetics, 2017, 7, 1775-1789.	1.8	17
30	Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Current Biology, 2021, 31, 3905-3914.e6.	3.9	17
31	Singleâ€parent expression drives dynamic gene expression complementation in maize hybrids. Plant Journal, 2021, 105, 93-107.	5.7	16
32	Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. Journal of Advanced Research, 2022, 38, 91-106.	9.5	16
33	CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. Cell Surface, 2021, 7, 100050.	3.0	16
34	Comparative genomics reveals a dynamic genome evolution in the ectomycorrhizal milk ap (<i>Lactarius</i>) mushrooms. New Phytologist, 2022, 235, 306-319.	7.3	14
35	Defining the eco-enzymological role of the fungal strain <i>Coniochaeta</i> sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiology Ecology, 2020, 96, .	2.7	12
36	Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environmental Microbiology, 2021, 23, 99-109.	3.8	12

#	Article	IF	CITATIONS
37	Integrative genomics reveals paths to sex dimorphism in <i>Salix purpurea</i> L. Horticulture Research, 2021, 8, 170.	6.3	12
38	Abscisic acid supports colonization of <i>Eucalyptus grandis</i> roots by the mutualistic ectomycorrhizal fungus <i>Pisolithus microcarpus</i> . New Phytologist, 2022, 233, 966-982.	7.3	12
39	Light-responsive expression atlas reveals the effects of light quality and intensity in Kalanchoë fedtschenkoi, a plant with crassulacean acid metabolism. GigaScience, 2020, 9, .	6.4	11
40	Revisiting a â€~simple' fungal metabolic pathway reveals redundancy, complexity and diversity. Microbial Biotechnology, 2021, 14, 2525-2537.	4.2	10
41	Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. Journal of Fungi (Basel, Switzerland), 2022, 8, 311.	3.5	10
42	The Transcription Factor Roc1 Is a Key Regulator of Cellulose Degradation in the Wood-Decaying Mushroom <i>Schizophyllum commune</i> . MBio, 2022, 13, .	4.1	10
43	A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi (Basel, Switzerland), 2021, 7, 426.	3.5	9
44	The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution in Populus trichocarpa. Genome Biology and Evolution, 2021, 13, .	2.5	9
45	Genomic Signatures of a Major Adaptive Event in the Pathogenic Fungus <i>Melampsora larici-populina</i> . Genome Biology and Evolution, 2022, 14, .	2.5	9
46	Detailed analysis of the D-galactose catabolic pathways in Aspergillus niger reveals complexity at both metabolic and regulatory level. Fungal Genetics and Biology, 2022, 159, 103670.	2.1	7
47	Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Communications Biology, 2022, 5, .	4.4	7
48	Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica. Journal of Fungi (Basel, Switzerland), 2021, 7, 854.	3.5	6
49	Omics analyses and biochemical study of Phlebiopsis gigantea elucidate its degradation strategy of wood extractives. Scientific Reports, 2021, 11, 12528.	3.3	5
50	Cryptic genetic structure and copyâ€number variation in the ubiquitous forest symbiotic fungus <scp><i>Cenococcum geophilum</i></scp> . Environmental Microbiology, 2021, 23, 6536-6556.	3.8	5
51	Unraveling the regulation of sugar beet pulp utilization in the industrially relevant fungus Aspergillus niger. IScience, 2022, 25, 104065.	4.1	5
52	Succession of physiological stages hallmarks the transcriptomic response of theÂfungus Aspergillus niger to lignocellulose. Biotechnology for Biofuels, 2020, 13, 69.	6.2	4
53	Annotated Genome Sequence of the High-Biomass-Producing Yellow-Green Alga Tribonema minus. Microbiology Resource Announcements, 2021, 10, e0032721.	0.6	4
54	GalR, GalX and AraR coâ€regulate <scp>d</scp> â€galactose and <scp>l</scp> â€arabinose utilization in <i>Aspergillus nidulans</i> . Microbial Biotechnology, 2022, 15, 1839-1851.	4.2	4

#	Article	IF	CITATIONS
55	High-Quality Draft Nuclear and Mitochondrial Genome Sequence of <i>Fusarium oxysporum</i> f. sp. <i>albedinis</i> strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Disease, 2022, 106, 1974-1976.	1.4	3
56	Draft genome sequences of strains CBS6241 and CBS6242 of the basidiomycetous yeast <i>Filobasidium floriforme</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	0
57	Enemy or ally: a genomic approach to elucidate the lifestyle of <i>Phyllosticta citrichinaensis</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	ο
58	Near-Complete Genome Sequence of Zygosaccharomyces rouxii NRRL Y-64007, a Yeast Capable of Growing on Lignocellulosic Hydrolysates. Microbiology Resource Announcements, 2022, , e0005022.	0.6	0