Galia Avidan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279075/publications.pdf

Version: 2024-02-01

80 papers 6,047 citations

30 h-index 79541 73 g-index

87 all docs 87 docs citations

87 times ranked

4639 citing authors

#	Article	IF	CITATIONS
1	Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex. Neuron, 1999, 24, 187-203.	3.8	1,104
2	Center–periphery organization of human object areas. Nature Neuroscience, 2001, 4, 533-539.	7.1	651
3	Congenital prosopagnosia: face-blind from birth. Trends in Cognitive Sciences, 2005, 9, 180-187.	4.0	315
4	Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nature Neuroscience, 2009, 12, 29-31.	7.1	312
5	Configural processing in autism and its relationship to face processing. Neuropsychologia, 2006, 44, 110-129.	0.7	264
6	Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 1. Behavioral Findings. Journal of Cognitive Neuroscience, 2005, 17, 1130-1149.	1.1	213
7	Contrast Sensitivity in Human Visual Areas and Its Relationship to Object Recognition. Journal of Neurophysiology, 2002, 87, 3102-3116.	0.9	200
8	Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings. Journal of Cognitive Neuroscience, 2005, 17, 1150-1167.	1.1	200
9	Impaired holistic processing in congenital prosopagnosia. Neuropsychologia, 2011, 49, 2541-2552.	0.7	198
10	Selective Dissociation Between Core and Extended Regions of the Face Processing Network in Congenital Prosopagnosia. Cerebral Cortex, 2014, 24, 1565-1578.	1.6	161
11	Shared and idiosyncratic cortical activation patterns in autism revealed under continuous realâ€ife viewing conditions. Autism Research, 2009, 2, 220-231.	2.1	155
12	Structural Imaging Reveals Anatomical Alterations in Inferotemporal Cortex in Congenital Prosopagnosia. Cerebral Cortex, 2007, 17, 2354-2363.	1.6	142
13	Functional MRI Reveals Compromised Neural Integrity of the Face Processing Network in Congenital Prosopagnosia. Current Biology, 2009, 19, 1146-1150.	1.8	137
14	Analysis of the Neuronal Selectivity Underlying Low fMRI Signals. Current Biology, 2002, 12, 964-972.	1.8	131
15	A detailed investigation of facial expression processing in congenital prosopagnosia as compared to acquired prosopagnosia. Experimental Brain Research, 2007, 176, 356-373.	0.7	126
16	The COVID-19 pandemic masks the way people perceive faces. Scientific Reports, 2020, 10, 22344.	1.6	123
17	Face-selective Activation in a Congenital Prosopagnosic Subject. Journal of Cognitive Neuroscience, 2003, 15, 419-431.	1.1	121
18	Bihemispheric Leftward Bias in a Visuospatial Attention-Related Network. Journal of Neuroscience, 2007, 27, 11271-11278.	1.7	116

#	Article	IF	CITATIONS
19	Reduction in White Matter Connectivity, Revealed by Diffusion Tensor Imaging, May Account for Age-related Changes in Face Perception. Journal of Cognitive Neuroscience, 2008, 20, 268-284.	1.1	106
20	Cortical patterns of categoryâ€selective activation for faces, places and objects in adults with autism. Autism Research, 2008, 1, 52-63.	2.1	97
21	Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nature Communications, 2018, 9, 2178.	5.8	95
22	"What" Precedes "Which": Developmental Neural Tuning in Face- and Place-Related Cortex. Cerebral Cortex, 2011, 21, 1963-1980.	1.6	85
23	Biochemical and Temporal Analysis of Events Associated with Apoptosis Induced by Lowering the Extracellular Potassium Concentration in Mouse Cerebellar Granule Neurons. Journal of Neurochemistry, 1997, 68, 750-759.	2.1	79
24	From a deep learning model back to the brain—Identifying regional predictors and their relation to aging. Human Brain Mapping, 2020, 41, 3235-3252.	1.9	62
25	Accumulation of visual information across multiple fixations. Journal of Vision, 2009, 9, 2-2.	0.1	59
26	Rapid Formation of Spatiotopic Representations As Revealed by Inhibition of Return. Journal of Neuroscience, 2010, 30, 8882-8887.	1.7	54
27	Multiple Reference Frames for Saccadic Planning in the Human Parietal Cortex. Journal of Neuroscience, 2011, 31, 1059-1068.	1.7	54
28	Three-Dimensional Representations of Objects in Dorsal Cortex are Dissociable from Those in Ventral Cortex. Cerebral Cortex, 2017, 27, 422-434.	1.6	53
29	Altered topology of neural circuits in congenital prosopagnosia. ELife, 2017, 6, .	2.8	47
30	Implicit familiarity processing in congenital prosopagnosia. Journal of Neuropsychology, 2008, 2, 141-164.	0.6	40
31	Visual Aversive Learning Compromises Sensory Discrimination. Journal of Neuroscience, 2018, 38, 2766-2779.	1.7	33
32	Spatial vs. object specific attention in high-order visual areas. Neurolmage, 2003, 19, 308-318.	2.1	30
33	Perceptual separability of featural and configural information in congenital prosopagnosia. Cognitive Neuropsychology, 2012, 29, 447-463.	0.4	30
34	Visual expertise for horses in a case of congenital prosopagnosia. Neuropsychologia, 2016, 83, 63-75.	0.7	30
35	Face masks disrupt holistic processing and face perception in school-age children. Cognitive Research: Principles and Implications, 2022, 7, 9.	1.1	30
36	Impairment of the face processing network in congenital prosopagnosia. Frontiers in Bioscience - Elite, 2014, 6, 236-257.	0.9	24

#	Article	IF	Citations
37	Language related reorganization in adult brain with slow growing glioma: fMRI prospective case-study. Neurocase, 2008, 14, 465-473.	0.2	23
38	General holistic impairment in congenital prosopagnosia: Evidence from Garner's speeded-classification task. Cognitive Neuropsychology, 2013, 30, 429-445.	0.4	23
39	Sensitivity to Object Impossibility in the Human Visual Cortex: Evidence from Functional Connectivity. Journal of Cognitive Neuroscience, 2015, 27, 1029-1043.	1.1	23
40	Mapping individual differences across brain network structure to function and behavior with connectome embedding. Neurolmage, 2021, 242, 118469.	2.1	23
41	Stimulus Dependent Dynamic Reorganization of the Human Face Processing Network. Cerebral Cortex, 2016, 27, 4823-4834.	1.6	22
42	Neural mechanisms of face perception, their emergence over development, and their breakdown. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 247-263.	1.4	20
43	Spatial Integration in Normal Face Processing and Its Breakdown in Congenital Prosopagnosia. Annual Review of Vision Science, 2021, 7, 301-321.	2.3	18
44	Representation of possible and impossible objects in the human visual cortex: Evidence from fMRI adaptation. Neurolmage, 2013, 64, 685-692.	2.1	17
45	Phasic alertness enhances processing of face and non-face stimuli in congenital prosopagnosia. Neuropsychologia, 2016, 89, 299-308.	0.7	15
46	Functional dissociation between perception and action is evident early in life. Developmental Science, 2012, 15, 653-658.	1.3	14
47	Functional dissociation between action and perception of object shape in developmental visual object agnosia. Cortex, 2016, 76, 17-27.	1.1	14
48	Neural correlates of future weight loss reveal a possible role for brain-gastric interactions. Neurolmage, 2021, 224, 117403.	2.1	12
49	Holistic processing of impossible objects: Evidence from Garner's speeded-classification task. Vision Research, 2013, 93, 10-18.	0.7	11
50	Impossible expectations: fMRI adaptation in the lateral occipital complex (LOC) is modulated by the statistical regularities of 3D structural information. Neurolmage, 2015, 122, 188-194.	2.1	11
51	Rapid forgetting of faces in congenital prosopagnosia. Cortex, 2020, 129, 119-132.	1.1	11
52	Effects of configural processing on the perceptual spatial resolution for face features. Cortex, 2015, 72, 115-123.	1.1	9
53	The Rapid Forgetting of Faces. Frontiers in Psychology, 2018, 9, 1319.	1.1	9
54	A possible neuronal account for the behavioural heterogeneity in congenital prosopagnosia. Cognitive Neuropsychology, 2018, 35, 74-77.	0.4	7

#	Article	IF	Citations
55	Implicitly perceived objects attract gaze during later free viewing. Journal of Vision, 2009, 9, 6-6.	0.1	6
56	Evidence for similar early but not late representation of possible and impossible objects. Frontiers in Psychology, 2015, 6, 94.	1.1	6
57	The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects. Psychonomic Bulletin and Review, 2015, 22, 297-306.	1.4	6
58	Minimal Recognizable Configurations Elicit Category-selective Responses in Higher Order Visual Cortex. Journal of Cognitive Neuroscience, 2019, 31, 1354-1367.	1.1	6
59	Holistic Face Perception. , 0, , .		6
60	Correlations between the fMRI BOLD Signal and Visual Perception. Neuron, 2002, 34, 495-497.	3.8	5
61	A Smile Worthy of Your Cognition: General Self-Efficacious Individuals Recognize and Remember Happy Faces. Journal of Social and Clinical Psychology, 2013, 32, 1-16.	0.2	5
62	Face perception: computational insights from phylogeny. Trends in Cognitive Sciences, 2022, 26, 350-363.	4.0	5
63	Does social support protect against recognition of angry facial expressions following failure?. Cognition and Emotion, 2013, 27, 1335-1344.	1.2	4
64	Project PAVE (Personality And Vision Experimentation): role of personal and interpersonal resilience in the perception of emotional facial expression. Frontiers in Human Neuroscience, 2014, 8, 602.	1.0	4
65	Holistic face representation is highly orientation-specific. Psychonomic Bulletin and Review, 2018, 25, 1351-1357.	1.4	4
66	Modular community structure of the face network supports face recognition. Cerebral Cortex, 2022, 32, 3945-3958.	1.6	4
67	Recovery of signal loss due to an in-plane susceptibility gradient in the gradient echo EPI through acquisition of extended phase-encoding lines. Magnetic Resonance Imaging, 2010, 28, 777-783.	1.0	3
68	Remapping of the environment without corollary discharges: Evidence from scene-based IOR. Journal of Vision, 2013, 13, 22-22.	0.1	3
69	Adults' Markers of Face Processing Are Present at Age 6 and Are Interconnected Along Development. Perception, 2018, 47, 1002-1028.	0.5	3
70	Impairment of the face processing network in congenital prosopagnosia. Frontiers in Bioscience - Elite, 2014, E6, 236.	0.9	2
71	When better is worse: Better face recognizers are more susceptible to the effect of face masks. Journal of Vision, 2021, 21, 2820.	0.1	1
72	Emotional cues differently modulate visual processing of faces and objects Emotion, 2019, 19, 573-583.	1.5	1

#	Article	IF	CITATIONS
73	Intact implicit representation of object 3D structure in object agnosia. Journal of Vision, 2015, 15, 1099.	0.1	1
74	Developing Behavioural Tools for Characterizing Normal and Abnormal Face Perception in 6-14 Years Old Children. Journal of Vision, 2015, 15, 1201.	0.1	1
75	The Compositionality of Facial Expressions. Perception, 2022, 51, 172-186.	0.5	1
76	Facial identity encoding, face space structure and neural-based image reconstruction in congenital prosopagnosia Journal of Vision, 2016, 16, 1234.	0.1	0
77	The effects of emotional cues on visual perception and the special case of faces. Journal of Vision, 2017, 17, 911.	0.1	O
78	Minimal Recognizable Configurations (MIRCs) elicit category selective responses in high order visual cortex. Journal of Vision, 2018, 18, 407.	0.1	0
79	Emotion Algebra reveals the richness of meanings of facial expressions. Journal of Vision, 2018, 18, 193.	0.1	O
80	Regression to the mean enhances perceptual resolutions of face identification. Journal of Vision, 2020, 20, 1177.	0.1	0