Stéphane Hacquard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8279060/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	9.4	840
2	Microbial interactions within the plant holobiont. Microbiome, 2018, 6, 58.	4.9	833
3	Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell, 2018, 175, 973-983.e14.	13.5	707
4	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	3.3	640
5	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	5.1	628
6	Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 2016, 165, 464-474.	13.5	510
7	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	3.9	468
8	Interplay Between Innate Immunity and the Plant Microbiota. Annual Review of Phytopathology, 2017, 55, 565-589.	3.5	410
9	Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 2012, 8, e1002643.	2.1	331
10	Microbiota-mediated disease resistance in plants. PLoS Pathogens, 2019, 15, e1007740.	2.1	221
11	Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications, 2016, 7, 11362.	5.8	214
12	Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2219-28.	3.3	165
13	Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nature Ecology and Evolution, 2020, 4, 122-131.	3.4	157
14	<i>Colletotrichum higginsianum</i> extracellular LysM proteins play dual roles in appressorial function and suppression of chitinâ€triggered plant immunity. New Phytologist, 2016, 211, 1323-1337.	3.5	155
15	A Comprehensive Analysis of Genes Encoding Small Secreted Proteins Identifies Candidate Effectors in <i>Melampsora larici-populina</i> (Poplar Leaf Rust). Molecular Plant-Microbe Interactions, 2012, 25, 279-293.	1.4	150
16	Root microbiota dynamics of perennial <i>Arabis alpina</i> are dependent on soil residence time but independent of flowering time. ISME Journal, 2017, 11, 43-55.	4.4	133
17	Critical Assessment of Metagenome Interpretation: the second round of challenges. Nature Methods, 2022, 19, 429-440.	9.0	133
18	Towards a holistic understanding of the beneficial interactions across the <i>Populus</i> microbiome. New Phytologist, 2015, 205, 1424-1430.	3.5	131

STéPHANE HACQUARD

#	Article	IF	CITATIONS
19	Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 2016, 209, 454-457.	3.5	97
20	A microbiota–root–shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nature Plants, 2021, 7, 1078-1092.	4.7	90
21	<i>Melampsora larici-populina</i> Transcript Profiling During Germination and Timecourse Infection of Poplar Leaves Reveals Dynamic Expression Patterns Associated with Virulence and Biotrophy. Molecular Plant-Microbe Interactions, 2011, 24, 808-818.	1.4	80
22	Laser microdissection and microarray analysis of <i><scp>T</scp>uber melanosporum</i> ectomycorrhizas reveal functional heterogeneity between mantle and <scp>H</scp> artig net compartments. Environmental Microbiology, 2013, 15, 1853-1869.	1.8	62
23	Laser Capture Microdissection of Uredinia Formed by <i>Melampsora larici-populina</i> Revealed a Transcriptional Switch Between Biotrophy and Sporulation. Molecular Plant-Microbe Interactions, 2010, 23, 1275-1286.	1.4	58
24	Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nature Communications, 2021, 12, 7227.	5.8	58
25	RNA-Seq of Early-Infected Poplar Leaves by the Rust Pathogen Melampsora larici-populina Uncovers PtSultr3;5, a Fungal-Induced Host Sulfate Transporter. PLoS ONE, 2012, 7, e44408.	1.1	57
26	Contribution of bacterial-fungal balance to plant and animal health. Current Opinion in Microbiology, 2019, 49, 66-72.	2.3	45
27	The Rust Fungus <i>Melampsora larici-populina</i> Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar. Molecular Plant-Microbe Interactions, 2018, 31, 695-706.	1.4	42
28	Microbiota-root-shoot-environment axis and stress tolerance in plants. Current Opinion in Plant Biology, 2021, 62, 102028.	3.5	40
29	Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves. Physiological and Molecular Plant Pathology, 2011, 75, 106-112.	1.3	38
30	Host-Associated Quantitative Abundance Profiling Reveals the Microbial Load Variation of Root Microbiome. Plant Communications, 2020, 1, 100003.	3.6	38
31	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
32	Root-Associated Bacterial and Fungal Community Profiles of <i>Arabidopsis thaliana</i> Are Robust Across Contrasting Soil P Levels. Phytobiomes Journal, 2018, 2, 24-34.	1.4	37
33	Differential Impact of Plant Secondary Metabolites on the Soil Microbiota. Frontiers in Microbiology, 2021, 12, 666010.	1.5	31
34	Transcriptome analysis of poplar rust telia reveals overwintering adaptation and tightly coordinated karyogamy and meiosis processes. Frontiers in Plant Science, 2013, 4, 456.	1.7	30
35	Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. Frontiers in Plant Science, 2014, 5, 111.	1.7	30
36	The Genomics of Powdery Mildew Fungi. Advances in Botanical Research, 2014, 70, 109-142.	0.5	21

#	Article	IF	CITATIONS
37	Impact of global change on the plant microbiome. New Phytologist, 2022, 234, 1907-1909.	3.5	15
38	Obtaining deeper insights into microbiome diversity using a simple method to block host and nontargets in amplicon sequencing. Molecular Ecology Resources, 2021, 21, 1952-1965.	2.2	9
39	Climate drives rhizosphere microbiome variation and divergent selection between geographically distant <i>Arabidopsis</i> populations. New Phytologist, 2022, 236, 608-621.	3.5	9
40	Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities. ISME Communications, 2021, 1, .	1.7	6
41	High-Throughput Profiling of Root-Associated Microbial Communities. Methods in Molecular Biology, 2022, 2494, 325-337.	0.4	4