Guri Grimnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278881/publications.pdf Version: 2024-02-01

CLIDI CDIMNES

#	Article	IF	CITATIONS
1	Vitamin D deficiency in Europe: pandemic?. American Journal of Clinical Nutrition, 2016, 103, 1033-1044.	2.2	963
2	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.	5.5	319
3	Tracking of Serum 25-Hydroxyvitamin D Levels During 14 Years in a Population-based Study and During 12 Months in an Intervention Study. American Journal of Epidemiology, 2010, 171, 903-908.	1.6	293
4	Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Progress in Lipid Research, 2011, 50, 303-312.	5.3	283
5	Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE, 2017, 12, e0170791.	1.1	219
6	Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS ONE, 2017, 12, e0180512.	1.1	189
7	High serum 25-hydroxyvitamin D concentrations are associated with a favorable serum lipid profile. European Journal of Clinical Nutrition, 2010, 64, 1457-1464.	1.3	155
8	Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: the TromsÃ, study. European Journal of Nutrition, 2010, 49, 401-407.	1.8	140
9	Low serum 25-hydroxyvitamin D levels are associated with increased all-cause mortality risk in a general population: the TromsÃ, study. European Journal of Endocrinology, 2010, 162, 935-942.	1.9	136
10	Seasonal Changes in Vitamin D-Effective UVB Availability in Europe and Associations with Population Serum 25-Hydroxyvitamin D. Nutrients, 2016, 8, 533.	1.7	127
11	Serum 25-Hydroxyvitamin D Levels Are Strongly Related to Systolic Blood Pressure But Do Not Predict Future Hypertension. Hypertension, 2010, 55, 792-798.	1.3	126
12	The Relationship between Serum TSH and Bone Mineral Density in Men and Postmenopausal Women: The TromsÃ, Study. Thyroid, 2008, 18, 1147-1155.	2.4	120
13	Vitamin D, Insulin Secretion, Sensitivity, and Lipids. Diabetes, 2011, 60, 2748-2757.	0.3	119
14	Baseline serum 25â€hydroxyvitamin D concentrations in the TromsÃ, Study 1994–95 and risk of developing type 2 diabetes mellitus during 11 years of followâ€up. Diabetic Medicine, 2010, 27, 1107-1115.	1.2	106
15	Polymorphisms Related to the Serum 25-Hydroxyvitamin D Level and Risk of Myocardial Infarction, Diabetes, Cancer and Mortality. The TromsĂ, Study. PLoS ONE, 2012, 7, e37295.	1.1	102
16	The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. European Journal of Endocrinology, 2013, 169, 559-567.	1.9	100
17	Serum free and bio-available 25-hydroxyvitamin D correlate better with bone density than serum total 25-hydroxyvitamin D. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 177-183.	0.6	95
18	Effect of smoking on the serum levels of 25-hydroxyvitamin D depends on the assay employed. European Journal of Endocrinology, 2010, 163, 339-348.	1.9	78

#	Article	IF	CITATIONS
19	Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels, gender and smoking status. The TromsÃ, Staph and Skin Study. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 465-473.	1.3	78
20	Câ€reactive protein, obesity, and the risk of arterial and venous thrombosis. Journal of Thrombosis and Haemostasis, 2016, 14, 1561-1571.	1.9	66
21	The effect of high-dose vitamin D on bone mineral density and bone turnover markers in postmenopausal women with low bone mass—a randomized controlled 1-year trial. Osteoporosis International, 2012, 23, 201-211.	1.3	63
22	Vitamin D and cognitive function: The TromsÃ, Study. Journal of the Neurological Sciences, 2015, 355, 155-161.	0.3	61
23	Continued decline in hip fracture incidence in Norway: a NOREPOS study. Osteoporosis International, 2016, 27, 2217-2222.	1.3	53
24	Supplementation with Vitamin D Does not Increase Serum Testosterone Levels in Healthy Males. Hormone and Metabolic Research, 2013, 45, 675-681.	0.7	51
25	Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, type 2 diabetes, cancer and mortality: the TromsÃ, Study. European Journal of Epidemiology, 2013, 28, 569-578.	2.5	50
26	Vitamin D deficiency and lifestyle risk factors in a Norwegian adolescent population. Scandinavian Journal of Public Health, 2014, 42, 593-602.	1.2	50
27	The TromsÃ, Study: Fit Futures: a study of Norwegian adolescents' lifestyle and bone health. Archives of Osteoporosis, 2014, 9, 185.	1.0	50
28	Vitamin D and health: The need for more randomized controlled trials. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 269-274.	1.2	49
29	Effects of vitamin D supplementation on markers for cardiovascular disease and type 2 diabetes: an individual participant data meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 2018, 107, 1043-1053.	2.2	49
30	Vitamin D supplementation did not prevent influenza-like illness as diagnosed retrospectively by questionnaires in subjects participating in randomized clinical trials. Scandinavian Journal of Infectious Diseases, 2012, 44, 126-132.	1.5	41
31	Prevention of urinary tract infections with vitamin D supplementation 20,000 lU per week for five years. Results from an RCT including 511 subjects. Infectious Diseases, 2016, 48, 823-828.	1.4	35
32	Vitamin D and intraocular pressure – results from a case –control and an intervention study. Acta Ophthalmologica, 2014, 92, 345-349.	0.6	34
33	Effect of Genetically Low 25-Hydroxyvitamin D on Mortality Risk: Mendelian Randomization Analysis in 3 Large European Cohorts. Nutrients, 2019, 11, 74.	1.7	30
34	Leisure time computer use and adolescent bone health-findings from the Tromso Study, Fit Futures: a cross-sectional study. BMJ Open, 2015, 5, e006665-e006665.	0.8	28
35	Serum cholecalciferol may be a better marker of vitamin D status than 25-hydroxyvitamin D. Medical Hypotheses, 2018, 111, 61-65.	0.8	26
36	Vitamin D and Lipids. Circulation, 2012, 126, 252-254.	1.6	24

#	Article	IF	CITATIONS
37	A combination of low serum concentrations of vitamins K1 and D is associated with increased risk of hip fractures in elderly Norwegians: a NOREPOS study. Osteoporosis International, 2016, 27, 1645-1652.	1.3	24
38	Serum levels of vitamin D are not associated with future risk of venous thromboembolism. Thrombosis and Haemostasis, 2013, 109, 885-890.	1.8	23
39	Supplementation with High Doses of Vitamin D to Subjects without Vitamin D Deficiency May Have Negative Effects: Pooled Data from Four Intervention Trials in TromsÃ,. Isrn Endocrinology, 2013, 2013, 1-7.	2.0	22
40	Cohort profile: Norwegian Epidemiologic Osteoporosis Studies (NOREPOS). Scandinavian Journal of Public Health, 2014, 42, 804-813.	1.2	22
41	No increase in risk of hip fracture at high serum retinol concentrations in community-dwelling older Norwegians: the Norwegian Epidemiologic Osteoporosis Studies. American Journal of Clinical Nutrition, 2015, 102, 1289-1296.	2.2	22
42	Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. Journal of the Neurological Sciences, 2019, 396, 165-171.	0.3	22
43	A population-based study of inflammatory mechanisms and pain sensitivity. Pain, 2020, 161, 338-350.	2.0	22
44	High dose vitamin D may improve lower urinary tract symptoms in postmenopausal women. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 28-32.	1.2	20
45	Effects of vitamin D supplementation on bone turnover markers and other bone-related substances in subjects with vitamin D deficiency. Bone, 2019, 124, 7-13.	1.4	20
46	Fracture incidence rates in Norwegian children, The TromsÃ, Study, Fit Futures. Archives of Osteoporosis, 2016, 11, 40.	1.0	19
47	Serum parathyroid hormone is associated with increased cortical porosity of the inner transitional zone at the proximal femur in postmenopausal women: the TromsÃ, Study. Osteoporosis International, 2018, 29, 421-431.	1.3	19
48	Residual Corticosteroid Production in Autoimmune Addison Disease. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2430-2441.	1.8	18
49	The DBP Phenotype Gc-1f/Gc-1f Is Associated with Reduced Risk of Cancer. The TromsÃ, Study. PLoS ONE, 2015, 10, e0126359.	1.1	16
50	Exploring the association between serum 25-hydroxyvitamin D and serum lipids—more than confounding?. European Journal of Clinical Nutrition, 2018, 72, 526-533.	1.3	16
51	Does the frequency and intensity of physical activity in adolescence have an impact on bone? The TromsÃ, Study, Fit Futures. BMC Sports Science, Medicine and Rehabilitation, 2015, 7, 26.	0.7	15
52	Changes and tracking of bone mineral density in late adolescence: the TromsÃ, Study, Fit Futures. Archives of Osteoporosis, 2017, 12, 37.	1.0	15
53	Bone mineral density at the hip and its relation to fat mass and lean mass in adolescents: the TromsÃ, Study, Fit Futures. BMC Musculoskeletal Disorders, 2018, 19, 21.	0.8	15
54	Smoking and other determinants of bone turnover. PLoS ONE, 2019, 14, e0225539.	1.1	15

#	Article	IF	CITATIONS
55	Association between serum 25-hydroxyvitamin D concentration and symptoms of respiratory tract infection in a Norwegian population: the TromsÃ, Study. Public Health Nutrition, 2014, 17, 780-786.	1.1	14
56	The effect of highâ€dose vitamin D supplementation on muscular function and quality of life in postmenopausal women—A randomized controlled trial. Clinical Endocrinology, 2017, 87, 20-28.	1.2	14
57	Associations between Polymorphisms Related to Calcium Metabolism and Human Height: The TromsÃ, Study. Annals of Human Genetics, 2012, 76, 200-210.	0.3	12
58	The effect of high-dose vitamin D3 supplementation on bone mineral density in subjects with prediabetes. Osteoporosis International, 2018, 29, 171-180.	1.3	12
59	Intake of Sugar-Sweetened Beverages in Adolescents from Troms, Norway—The TromsÃ, Study: Fit Futures. Nutrients, 2019, 11, 211.	1.7	12
60	The Phosphodiesterase 8B Gene rs4704397 is Associated with Thyroid Function, Risk of Myocardial Infarction, and Body Height: The TromsÃ, Study. Thyroid, 2014, 24, 215-222.	2.4	11
61	The influence of birth weight and length on bone mineral density and content in adolescence: The TromsÃ _s Study, Fit Futures. Archives of Osteoporosis, 2017, 12, 54.	1.0	10
62	Hormonal contraceptive use and Staphylococcus aureus nasal and throat carriage in a Norwegian youth population. PLoS ONE, 2019, 14, e0218511.	1.1	10
63	C3-epimerization of 25-hydroxyvitamin D increases with increasing serum 25-hydroxyvitamin D levels and shows a high degree of tracking over time. Clinical Biochemistry, 2018, 54, 61-67.	0.8	9
64	The association between childhood fractures and adolescence bone outcomes: a population-based study, the TromsÃ, Study, Fit Futures. Osteoporosis International, 2018, 29, 441-450.	1.3	9
65	Increased calcium intake is associated lower serum 25-hydroxyvitamin D levels in subjects with adequate vitamin D intake: a population-based observational study. BMC Nutrition, 2020, 6, 49.	0.6	8
66	Four months vitamin D supplementation to vitamin D insufficient individuals does not improve muscular strength: A randomized controlled trial. PLoS ONE, 2019, 14, e0225600.	1.1	7
67	Undiagnosed diabetes based on HbA _{1c} by socioeconomic status and healthcare consumption in the TromsĀ, Study 1994–2016. BMJ Open Diabetes Research and Care, 2021, 9, e002423.	1.2	7
68	Circulating sex-steroids and Staphylococcus aureus nasal carriage in a general female population. European Journal of Endocrinology, 2021, 184, 333-342.	1.9	6
69	Polymorphisms in the vitamin D system and mortality – The TromsÃ, study. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105481.	1.2	5
70	No improvement of sleep from vitamin D supplementation: insights from a randomized controlled trial. Sleep Medicine: X, 2021, 3, 100040.	0.5	5
71	100 YEARS OF VITAMIN D: Combined hormonal contraceptives and vitamin D metabolism in adolescent girls. Endocrine Connections, 2022, 11, .	0.8	5
72	Serum PTH is not a good marker for defining a threshold for vitamin D deficiency. Endocrine Connections, 2020, 9, 396-404.	0.8	4

#	Article	IF	CITATIONS
73	Are pro-inflammatory markers associated with psychological distress in a cross-sectional study of healthy adolescents 15–17Âyears of age? The Fit Futures study. BMC Psychology, 2022, 10, 65.	0.9	4
74	Circulating sex-steroids and <i>Staphylococcus aureus</i> nasal carriage in a general male population. Epidemiology and Infection, 2022, 150, e93.	1.0	4
75	Distribution and determinants of retinol in Norwegian adolescents, and its relation to bone mineral density: the TromsÃ, Study: Fit Futures. European Journal of Clinical Nutrition, 2018, 72, 1373-1384.	1.3	3
76	Body Weight and Body Mass Index Influence Bone Mineral Density in Late Adolescence in a Twoâ€Year Followâ€Up Study. The TromsÃ, Study: Fit Futures. JBMR Plus, 2019, 3, e10195.	1.3	3
77	Lost relation between blood pressure and serum 25-hydroxyvitamin D. Blood Pressure, 2019, 28, 64-73.	0.7	3
78	Vitamin D: no cure for depression. American Journal of Clinical Nutrition, 2019, 110, 1043-1044.	2.2	2
79	The influence of snuff and smoking on bone accretion in late adolescence. The TromsÃ, study, Fit Futures. Archives of Osteoporosis, 2021, 16, 143.	1.0	2
80	No association between birth season and vitamin D concentration in adults in a North Norwegian population-the TromsÃ, study. Annals of Translational Medicine, 2016, 4, 20.	0.7	2
81	Individual Variation in Adaptive Immune Responses and Risk of Hip Fracture—A <scp>NOREPOS Populationâ€Based</scp> Cohort Study. Journal of Bone and Mineral Research, 2020, 35, 2327-2334.	3.1	1
82	C-Reactive Protein and TGF-α Predict Psychological Distress at Two Years of Follow-Up in Healthy Adolescent Boys: The Fit Futures Study. Frontiers in Psychology, 2022, 13, 823420.	1.1	1
83	The effect of vitamin D dose on bone mineral density: response to comment by Heaney. Osteoporosis International, 2012, 23, 791-791.	1.3	0
84	Vitamin D and bone—the search for the optimal dose. AME Medical Journal, 2017, 2, 176-176.	0.4	0