Shlomi Reuveni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The inspection paradox in stochastic resetting. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 021001.	0.7	47
2	Mitigating long queues and waiting times with service resetting. , 2022, 1, .		12
3	Growth laws and invariants from ribosome biogenesis in lower Eukarya. Physical Review Research, 2021, 3, .	1.3	7
4	Thermodynamic uncertainty relation for systems with unidirectional transitions. Physical Review Research, 2021, 3, .	1.3	30
5	Tail-behavior roadmap for sharp restart. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 125001.	0.7	8
6	Diffusion with local resetting and exclusion. Physical Review Research, 2021, 3, .	1.3	24
7	Resetting transition is governed by an interplay between thermal and potential energy. Journal of Chemical Physics, 2021, 154, 171103.	1.2	24
8	Unified Approach to Gated Reactions on Networks. Physical Review Letters, 2021, 127, 018301.	2.9	10
9	Thermodynamic uncertainty relation for first-passage times on Markov chains. Physical Review Research, 2021, 3, .	1.3	17
10	Gated reactions in discrete time and space. Journal of Chemical Physics, 2021, 155, 234112.	1.2	3
11	Constant gradient FEXSY: A time-efficient method for measuring exchange. Journal of Magnetic Resonance, 2020, 311, 106667.	1.2	7
12	Experimental Realization of Diffusion with Stochastic Resetting. Journal of Physical Chemistry Letters, 2020, 11, 7350-7355.	2.1	135
13	Diffusion with resetting in a logarithmic potential. Journal of Chemical Physics, 2020, 152, 234110.	1.2	71
14	Ribosome Composition Maximizes Cellular Growth Rates in <i>E.Âcoli</i> . Physical Review Letters, 2020, 125, 028103.	2.9	20
15	Mean-performance of sharp restart I: statistical roadmap. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 405004.	0.7	20
16	Search with home returns provides advantage under high uncertainty. Physical Review Research, 2020, 2, .	1.3	75
17	Light-Controlled Selective Collection-and-Release of Biomolecules by an On-Chip Nanostructured Device. Nano Letters, 2019, 19, 5868-5878.	4.5	23
18	Local time of diffusion with stochastic resetting. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 264002.	0.7	41

Shlomi Reuveni

#	Article	IF	CITATIONS
19	Time-dependent density of diffusion with stochastic resetting is invariant to return speed. Physical Review E, 2019, 100, 040101.	0.8	56
20	Occupancy correlations in the asymmetric simple inclusion process. Physical Review E, 2019, 100, 042109.	0.8	3
21	Gumbel central limit theorem for max-min and min-max. Physical Review E, 2019, 100, 020104.	0.8	6
22	Poisson-process limit laws yield Gumbel max-min and min-max. Physical Review E, 2019, 100, 022129.	0.8	4
23	Péclet number governs transition to acceleratory restart in drift-diffusion. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 255002.	0.7	71
24	Invariants of motion with stochastic resetting and space-time coupled returns. New Journal of Physics, 2019, 21, 113024.	1.2	52
25	Multisite phosphorylation drives phenotypic variation in (p)ppGpp synthetase-dependent antibiotic tolerance. Nature Communications, 2019, 10, 5133.	5.8	28
26	First Passage under Restart with Branching. Physical Review Letters, 2019, 122, 020602.	2.9	55
27	Single-molecule theory of enzymatic inhibition. Nature Communications, 2018, 9, 779.	5.8	64
28	First Passage under Restart. Physical Review Letters, 2017, 118, 030603.	2.9	231
29	Ribosomes are optimized for autocatalytic production. Nature, 2017, 547, 293-297.	13.7	60
30	Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal. Physical Review Letters, 2016, 116, 170601.	2.9	196
31	Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem. Physical Review E, 2015, 92, 060101.	0.8	116
32	CATALAN'S TRAPEZOIDS. Probability in the Engineering and Informational Sciences, 2014, 28, 353-361.	0.6	8
33	Role of substrate unbinding in Michaelis–Menten enzymatic reactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4391-4396.	3.3	205
34	Occupation probabilities and fluctuations in the asymmetric simple inclusion process. Physical Review E, 2014, 89, 042109.	0.8	11
35	The Role of Substrate Unbinding in Michaelis-Menten Enzymatic Reactions. Biophysical Journal, 2014, 106, 677a.	0.2	1
36	Limit laws for the asymmetric inclusion process. Physical Review E, 2012, 86, 061133.	0.8	8

Shlomi Reuveni

#	Article	IF	CITATIONS
37	Dynamic structure factor of vibrating fractals: Proteins as a case study. Physical Review E, 2012, 85, 011906.	0.8	15
38	Dynamic Structure Factor of Vibrating Fractals. Physical Review Letters, 2012, 108, 068101.	2.9	17
39	Asymmetric Inclusion Process as a Showcase of Complexity. Physical Review Letters, 2012, 109, 020603.	2.9	24
40	Anomalies in the Vibrational Dynamics of Proteins are a Consequence of Fractal-Like Stracture. Biophysical Journal, 2011, 100, 223a-224a.	0.2	0
41	Asymmetric inclusion process. Physical Review E, 2011, 84, 041101.	0.8	14
42	Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model. PLoS Computational Biology, 2011, 7, e1002127.	1.5	175
43	A Ribosome Flow Model for Analyzing Translation Elongation. Lecture Notes in Computer Science, 2011, , 358-360.	1.0	1
44	Vibrational shortcut to the mean-first-passage-time problem. Physical Review E, 2010, 81, 040103.	0.8	19
45	Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13696-13700.	3.3	57
46	General mapping between random walks and thermal vibrations in elastic networks: Fractal networks as a case study. Physical Review E, 2010, 82, 041132.	0.8	9
47	Coexistence of Flexibility and Stability of Proteins: An Equation of State. PLoS ONE, 2009, 4, e7296.	1.1	21
48	Proteins: Coexistence of Stability and Flexibility. Physical Review Letters, 2008, 100, 208101.	2.9	71
49	Proteins: Coexistence of Stability and Flexibility. , 2008, , .		0
50	Mean-performance of sharp restart II: Inequality roadmap. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	8