Yifeng Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278684/publications.pdf Version: 2024-02-01

VIEENC THENC

#	Article	IF	CITATIONS
1	Effect of Sr on Sm-doped ceria electrolyte. International Journal of Hydrogen Energy, 2011, 36, 5128-5135.	3.8	75
2	Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs. Materials Research Bulletin, 2009, 44, 775-779.	2.7	72
3	Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. International Journal of Heat and Mass Transfer, 2015, 84, 942-954.	2.5	71
4	Oxygen reduction mechanism of NdBaCo2O5+Î′ cathode for intermediate-temperature solid oxide fuel cells under cathodic polarization. International Journal of Hydrogen Energy, 2009, 34, 2416-2420.	3.8	70
5	La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs. Materials Research Bulletin, 2009, 44, 1717-1721.	2.7	66
6	Comparison of performance and degradation of large-scale solid oxide electrolysis cells in stack with different composite air electrodes. International Journal of Hydrogen Energy, 2015, 40, 2460-2472.	3.8	63
7	Effect of zinc oxide on yttria doped ceria. Journal of Power Sources, 2010, 195, 3130-3134.	4.0	57
8	Achieving high-efficiency hydrogen production using planar solid-oxide electrolysis stacks. International Journal of Hydrogen Energy, 2014, 39, 10833-10842.	3.8	53
9	PrBaMn2O5+l̂´ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Applied Catalysis B: Environmental, 2019, 257, 117868.	10.8	53
10	The effect of Sr on the properties of Y-doped ceria electrolyte for IT-SOFCs. Journal of Alloys and Compounds, 2009, 486, 586-589.	2.8	50
11	Effect of Fe2O3 on Sm-doped ceria system solid electrolyte for IT-SOFCs. Journal of Alloys and Compounds, 2011, 509, 546-550.	2.8	42
12	Mo-doped LaO·6SrO·4FeO3-δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells. Electrochimica Acta, 2020, 337, 135794.	2.6	36
13	Effect of Co doping on the properties of Sr0.8Ce0.2MnO3â~î^ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2008, 33, 4681-4688.	3.8	31
14	Effect of zinc oxide doping on the grain boundary conductivity of Ce0.8Ln0.2O1.9 ceramics (Ln=Y, Sm,) Tj ETQq	0 0 0 rgBT 4.0	Overlock 10
15	Sinterability and electrical properties of ZnO-doped Ce0.8Y0.2O1.9 electrolytes prepared by an EDTA–citrate complexing method. Journal of Alloys and Compounds, 2011, 509, 94-98.	2.8	30
16	Investigation of 30-cell solid oxide electrolyzer stack modules for hydrogen production. Ceramics International, 2014, 40, 5801-5809.	2.3	30
17	Preparation and characterization of Nd2â^'xSrxCoO4+δ cathodes for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35, 5594-5600.	3.8	28

18Effect of Dy on the properties of Sm-doped ceria electrolyte for IT-SOFCs. Journal of Alloys and
Compounds, 2011, 509, 1244-1248.2.827

YIFENG ZHENG

#	Article	IF	CITATIONS
19	3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process. International Journal of Hydrogen Energy, 2021, 46, 2577-2593.	3.8	27
20	Mn-doped Ruddlesden-Popper oxide La1.5Sr0.5NiO4+δ as a novel air electrode material for solid oxide electrolysis cells. Ceramics International, 2021, 47, 1208-1217.	2.3	27
21	Asymmetric anode substrate fabricated by phase inversion process and its interface modification for solid oxide fuel cells. Journal of Alloys and Compounds, 2018, 742, 20-28.	2.8	25
22	Modelling of solid oxide electrolyser cell using extreme learning machine. Electrochimica Acta, 2017, 251, 137-144.	2.6	24
23	Modifying the electrode-electrolyte interface of anode supported solid oxide fuel cells (SOFCs) by laser-machining. Energy Conversion and Management, 2018, 171, 1030-1037.	4.4	24
24	High catalytic activity of Fe-based perovskite fuel electrode for direct CO2 electroreduction in SOECs. Journal of Alloys and Compounds, 2021, 888, 161573.	2.8	24
25	Effect of Cl doping on the electrochemical performance of Sr2Fe1.5Mo0.5O6â^' cathode material for solid oxide fuel cells. Ceramics International, 2020, 46, 22787-22796.	2.3	23
26	Effect of chromium poisoning on the electrochemical properties of NdBaCo2O5+δ cathode for IT-SOFCs. International Journal of Hydrogen Energy, 2010, 35, 2457-2462.	3.8	22
27	Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode. Energy, 2021, 228, 120579.	4.5	22
28	Enhanced performance of NiO–3YSZ planar anode-supported SOFC with an anode functional layer. Journal of Materials Science, 2020, 55, 88-98.	1.7	21
29	Ca and Fe co-doped SmBaCo2O5Â+Â layered perovskite as an efficient cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2017, 696, 964-970.	2.8	19
30	A Ca and Fe Co-Doped Layered Perovskite as Stable Air Electrode in Solid Oxide Electrolyzer Cells under High-Current Electrolysis. Electrochimica Acta, 2017, 251, 581-587.	2.6	19
31	YSZ electrolyte support with novel symmetric structure by phase inversion process for solid oxide fuel cells. Energy Conversion and Management, 2018, 177, 11-18.	4.4	19
32	High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells. Electrochimica Acta, 2018, 280, 206-215.	2.6	19
33	Quantitative contribution of resistance sources of components to stack performance for solid oxide electrolysis cells. Journal of Power Sources, 2015, 274, 736-740.	4.0	17
34	Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fe1.5Mo0.5O6-δ electrodes via infiltration of Pr6O11 bifunctional catalyst. Electrochimica Acta, 2022, 402, 139569.	2.6	17
35	Effect and mechanism of Cr deposition in cathode current collecting layer on cell performance inside stack for planar solid oxide fuel cells. Journal of Power Sources, 2014, 245, 119-128.	4.0	16
36	Effect of dual doping on the structure and performance of garnet-type Li7La3Zr2O12 ceramic electrolytes for solid-state lithium-ion batteries. Ceramics International, 2019, 45, 17874-17883.	2.3	16

YIFENG ZHENG

#	Article	IF	CITATIONS
37	Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells. International Journal of Hydrogen Energy, 2020, 45, 14648-14659.	3.8	16
38	La0.75Sr0.25Cr0.5Mn0.5O3- as cathode for electrolysis and co-electrolysis of CO2 and H2O in solid oxide electrolysis cell. Ceramics International, 2021, 47, 23350-23361.	2.3	16
39	Improving the electrochemical properties of SSZ electrolyte-supported solid oxide fuel cells. Ceramics International, 2014, 40, 14621-14626.	2.3	14
40	Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique. International Journal of Hydrogen Energy, 2019, 44, 28939-28946.	3.8	14
41	Effect of BaO B2O3 composite sintering aid on sinterability and electrical property of BaZr0.85Y0.15O3- ceramic. Ceramics International, 2019, 45, 13679-13684.	2.3	14
42	Bi-doped La1.5Sr0.5Ni0.5Mn0.5O4+δ as an efficient air electrode material for SOEC. International Journal of Hydrogen Energy, 2021, 46, 36037-36045.	3.8	14
43	Evaluation of Cu-substituted La1.5Sr0.5NiO4+Ĩ´as air electrode for CO2 electrolysis in solid oxide electrolysis cells. Ceramics International, 2022, 48, 31509-31518.	2.3	14
44	A facile method to fabricate proton-conducting BaZrO·85YO·15O3- electrolyte with a large grain size and high conductivity. Ceramics International, 2019, 45, 24946-24952.	2.3	13
45	Ca-doped La0.75Sr0.25Cr0.5Mn0.5O3 cathode with enhanced CO2 electrocatalytic performance for high-temperature solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 33349-33359.	3.8	13
46	Performance of LaBaCo2O5+δ-Ag with B2O3-Bi2O3-PbO frit composite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 9939-9945.	4.0	11
47	Influence of MoO3 on boron aluminosilicate glass-ceramic coating for enhancing titanium high-temperature oxidation resistance. Journal of Alloys and Compounds, 2017, 729, 453-462.	2.8	11
48	Sr-substituted SmBa0.75Ca0.25CoFeO5+ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 770, 616-624.	2.8	10
49	Understanding the occurrence of the individual CO2 electrolysis during H2O-CO2 co-electrolysis in classic planar Ni-YSZ/YSZ/LSM-YSZ solid oxide cells. Electrochimica Acta, 2019, 318, 440-448.	2.6	10
50	Quantitative electrochemical contributions of cells and stacked interfacial contacts in solid-oxide electrolysis cells. International Journal of Hydrogen Energy, 2016, 41, 4538-4545.	3.8	9
51	Systematic study of short circuit activation on the performance of PEM fuel cell. International Journal of Hydrogen Energy, 2021, 46, 23489-23497.	3.8	9
52	Electrochemical characterization of Co-doped Sr0.8Ce0.2MnO3â^´Î´ cathodes on Sm0.2Ce0.8O1.9-electrolyte for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54, 3532-3537.	2.6	8
53	Effect of Ca2+ and Zn2+ cations substitution on the properties of La0.85Sr0.15CrO3 as SOFC interconnect. Journal of Alloys and Compounds, 2009, 480, 958-961.	2.8	7
54	Effect of the sintering temperature on the properties of Ce0.85La0.10Ca0.05O2â~î´ electrolyte material. Materials Research Bulletin, 2011, 46, 130-135.	2.7	7

YIFENG ZHENG

#	Article	IF	CITATIONS
55	Highly durable Sr-doped LaMnO3-based cathode modified with Pr6O11 nano-catalyst for protonic ceramic fuel cells based on Y-doped BaZrO3 electrolyte. Journal of the European Ceramic Society, 2022, 42, 4266-4274.	2.8	7
56	Deficiency of hydrogen production in commercialized planar Ni-YSZ/YSZ/LSM-YSZ steam electrolysis cells. International Journal of Hydrogen Energy, 2022, 47, 23514-23519.	3.8	7
57	Scaling Up and Characterization of Single‣ayer Fuel Cells. Energy Technology, 2016, 4, 967-972.	1.8	4
58	Effect of electrolyte composite on the performance of SmBa0.5Sr0.25Ca0.25CoFeO5+l´ cathode for IT-SOFCs. Ionics, 2020, 26, 281-291.	1.2	4
59	Performance of ceramic cathode current collector with novel microstructure for solid oxide fuel cells. Ceramics International, 2021, 47, 8453-8460.	2.3	0