Angiola Forleo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278368/publications.pdf

Version: 2024-02-01

		516710	477307
35	1,087	16	29
papers	citations	h-index	g-index
39	39	39	1611
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites. Environmental Pollution, 2022, 304, 119119.	7.5	11
2	Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 10236.	2.6	8
3	Blood, urine and semen Volatile Organic Compound (VOC) pattern analysis for assessing health environmental impact in highly polluted areas in Italy. Environmental Pollution, 2021, 286, 117410.	7.5	28
4	Double Approach to Study VOC Composition in Biofluids of Young Men Living in the "Land of Fires―in Campania Region. Lecture Notes in Electrical Engineering, 2020, , 103-109.	0.4	2
5	In vitro profiling of endothelial volatile organic compounds under resting and pro-inflammatory conditions. Metabolomics, 2019, 15, 132.	3.0	4
6	Iron Oxides Nanoparticles Langmuir-Schaeffer Multilayers for Chemoresistive Gas Sensing. Lecture Notes in Electrical Engineering, 2018, , 66-72.	0.4	0
7	Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomedical Chromatography, 2018, 32, e4132.	1.7	36
8	HS-SPME-GC-MS metabolomics approach for sperm quality evaluation by semen volatile organic compounds (VOCs) analysis. Biomedical Physics and Engineering Express, 2018, 5, 015006.	1.2	21
9	Breath Analysis by a GC/MS Coupled to a Gas Sensor Detector. Lecture Notes in Electrical Engineering, 2018, , 267-275.	0.4	1
10	Evaluation of the Volatile Organic Compounds Released from Peripheral Blood Mononuclear Cells and THP1 Cells Under Normal and Proinflammatory Conditions. Lecture Notes in Electrical Engineering, 2018, , 269-277.	0.4	5
11	Palladium \hat{J}^3 -Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors. Sensors and Actuators B: Chemical, 2017, 243, 895-903.	7.8	38
12	Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sensors and Actuators B: Chemical, 2011, 154, 283-287.	7.8	43
13	Fabrication at wafer level of micromachined gas sensors based on Sno <inf>2</inf> nanorods deposited by PECVD and gas sensing characteristics. , 2011, , .		1
14	Synthesis and gas sensing properties of ZnO quantum dots. Sensors and Actuators B: Chemical, 2010, 146, 111-115.	7.8	115
15	Wafer-Level Fabrication and Gas Sensing Properties of miniaturized gas sensors based on Inductively Coupled Plasma Deposited Tin Oxide Nanorods. Procedia Chemistry, 2009, 1, 196-199.	0.7	9
16	Linear temperature microhotplate gas sensor array for automotive cabin air quality monitoring. Sensors and Actuators B: Chemical, 2008, 134, 660-665.	7.8	40
17	TiO2 nanowires array fabrication and gas sensing properties. Sensors and Actuators B: Chemical, 2008, 130, 70-76.	7.8	146
18	The hydrolytic route to Co-porphyrin-doped SnO2 gas-sensing materials. Inorganica Chimica Acta, 2008, 361, 79-85.	2.4	9

#	Article	IF	CITATIONS
19	Novel nano-hybrid gas sensor based on n-TiO2 functionalized by phthalocyanines via supersonic beam co-deposition: Performance and application to automotive air quality., 2008,,.		2
20	FIRB "SQUARE" PROJECT: NANO-STRUCTURED SENSORS FOR THE DETECTION OF THE POLLUTING IC ENGINE EXHAUST GASES AND FOR INDOOR AIR QUALITY MONITORING. , 2008, , .		0
21	Nanofabrication of TiO 2 nanowires: I-V characteristic and improvement of metal oxides gas sensing properties. , 2007, , .		O
22	Synthesis, electrical characterization, and gas sensing properties of molybdenum oxide nanorods. Applied Physics Letters, 2006, 88, 152111.	3.3	120
23	Gas Sensing Response Improvement of Well-Aligned TiO2 Nanowires Array. , 2006, , .		0
24	Nanostructured In2O3–SnO2 sol–gel thin film as material for NO2 detection. Sensors and Actuators B: Chemical, 2006, 114, 646-655.	7.8	126
25	A WO3-based gas sensor array with linear temperature gradient for wine quality monitoring. Sensors and Actuators B: Chemical, 2006, 117, 115-122.	7.8	25
26	Response evaluation of an E-nose towards contaminated wheat by Fusarium poae fungi. Sensors and Actuators B: Chemical, 2006, 118, 433-438.	7.8	37
27	Design of an Electronic Nose for Selective Phosphine Detection in Cereals. Sensor Letters, 2006, 4, 229-234.	0.4	5
28	<title>Microhotplate-based silicon gas sensor arrays with linear temperature gradient for wine quality monitoring</title> ., 2005, , .		3
29	Thermal annealing effect on nanostructured TiO2 microsensors by supersonic cluster beam deposition. Sensors and Actuators B: Chemical, 2005, 111-112, 22-27.	7.8	12
30	NO2-gas-sensing properties of mixed In2O3–SnO2 thin films. Thin Solid Films, 2005, 490, 68-73.	1.8	51
31	Preparation and characterization of cobalt porphyrin modified tin dioxide films for sensor applications. Sensors and Actuators B: Chemical, 2004, 103, 339-343.	7.8	67
32	Solid State Gas Sensors: State of the Art and Future Activities. ChemInform, 2004, 35, no.	0.0	83
33	Role of osmium in the electrical transport mechanism of polycrystalline tin oxide thin films. Applied Physics Letters, 2004, 84, 744-746.	3.3	21
34	PREPARATION OF NOVEL HYBRID SENSING MATERIALS: PORPHYRIN DOPED TIN DIOXIDE THIN FILMS. , 2004, , .		0
35	Hall effect measurements in gas sensors based on nanosized os-doped sol-gel derived SnO/sub 2/ thin films. IEEE Sensors Journal, 2003, 3, 827-834.	4.7	13