Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278248/publications.pdf

Version: 2024-02-01

145	11,332	58 h-index	100
papers	citations		g-index
155	155	155	10181 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Inflammation after Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 894-908.	4.3	583
2	Modulators of microglial activation and polarization after intracerebral haemorrhage. Nature Reviews Neurology, 2017, 13, 420-433.	10.1	552
3	Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress in Neurobiology, 2010, 92, 463-477.	5.7	506
4	Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Progress in Neurobiology, 2014, 115, 25-44.	5.7	492
5	Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2, e90777.	5.0	483
6	Ferroptosis and Its Role in Diverse Brain Diseases. Molecular Neurobiology, 2019, 56, 4880-4893.	4.0	319
7	Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain, 2007, 130, 1643-1652.	7.6	318
8	Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain, 2005, 128, 1622-1633.	7.6	295
9	UCHL1 is a Parkinson's disease susceptibility gene. Annals of Neurology, 2004, 55, 512-521.	5.3	227
10	Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Molecular Neurobiology, 2017, 54, 1874-1886.	4.0	207
11	Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radical Biology and Medicine, 2007, 43, 408-414.	2.9	198
12	Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Progress in Neurobiology, 2019, 178, 101610.	5.7	185
13	Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain, Behavior, and Immunity, 2017, 61 , $326-339$.	4.1	169
14	Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Annals of Neurology, 2003, 54, 655-664.	5. 3	168
15	Iron Toxicity in Mice with Collagenase-Induced Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1243-1250.	4.3	161
16	Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke and Vascular Neurology, 2019, 4, 93-95.	3.3	147
17	(â€)â€Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of Clinical and Translational Neurology, 2014, 1, 258-271.	3.7	146
18	Tuftsin Fragment $1\hat{a}\in$ '3 Is Beneficial When Delivered After the Induction of Intracerebral Hemorrhage. Stroke, 2005, 36, 613-618.	2.0	137

#	Article	IF	Citations
19	Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes. Cellular Immunology, 2011, 272, 33-38.	3.0	136
20	Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radical Biology and Medicine, 2019, 131, 345-355.	2.9	126
21	Iron and Intracerebral Hemorrhage: From Mechanism to Translation. Translational Stroke Research, 2014, 5, 429-441.	4.2	121
22	Toll-Like Receptor 4/MyD88–Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage. Circulation, 2016, 134, 1025-1038.	1.6	118
23	Hemorrhagic Transformation after Tissue Plasminogen Activator Reperfusion Therapy for Ischemic Stroke: Mechanisms, Models, and Biomarkers. Molecular Neurobiology, 2015, 52, 1572-1579.	4.0	113
24	Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis. Frontiers in Neurology, 2018, 9, 581.	2.4	108
25	NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience, 2017, 343, 77-84.	2.3	106
26	Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radical Biology and Medicine, 2016, 92, 15-28.	2.9	105
27	Contribution of Extracellular Proteolysis and Microglia to Intracerebral Hemorrhage. Neurocritical Care, 2005, 3, 077-085.	2.4	104
28	The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications. Molecular Neurobiology, 2016, 53, 1794-1801.	4.0	104
29	Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3110-3123.	4.3	104
30	Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiology of Disease, 2017, 103, 54-69.	4.4	102
31	Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology, 2001, 56, 1757-1759.	1.1	100
32	Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1752-1768.	4.3	91
33	Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radical Biology and Medicine, 2018, 124, 504-516.	2.9	89
34	Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiology of Disease, 2006, 22, 473-476.	4.4	87
35	Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. Neurobiology of Disease, 2012, 45, 388-394.	4.4	86
36	Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience, 2008, 155, 1133-1141.	2.3	85

#	Article	IF	CITATIONS
37	Mouse Models of Intracerebral Hemorrhage in Ventricle, Cortex, and Hippocampus by Injections of Autologous Blood or Collagenase. PLoS ONE, 2014, 9, e97423.	2.5	79
38	Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. Scientific Reports, 2017, 7, 40358.	3.3	77
39	Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behavioural Brain Research, 2018, 339, 297-304.	2.2	77
40	Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. Journal of Leukocyte Biology, 2013, 95, 651-659.	3.3	76
41	Inhibition of prostaglandin E ₂ receptor EP3 mitigates thrombin-induced brain injury. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1059-1074.	4.3	73
42	(â°')-Epicatechin, a Natural Flavonoid Compound, Protects Astrocytes Against Hemoglobin Toxicity via Nrf2 and AP-1 Signaling Pathways. Molecular Neurobiology, 2017, 54, 7898-7907.	4.0	73
43	MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats. Frontiers in Molecular Neuroscience, 2017, 10, 126.	2.9	73
44	Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain, Behavior, and Immunity, 2015, 46, 293-310.	4.1	72
45	GSK- $3\hat{l}^2$ inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/ \hat{l}^2 -catenin signaling pathway after acute ischemic stroke in rats. Molecular Neurobiology, 2016, 53, 7028-7036.	4.0	72
46	Dynamic changes of inflammatory markers in brain after hemorrhagic stroke in humans: A postmortem study. Brain Research, 2010, 1342, 111-117.	2.2	71
47	Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magnetic Resonance in Medicine, 2015, 74, 42-50.	3.0	71
48	Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Tollâ€ike receptor 4 signaling pathway. FASEB Journal, 2019, 33, 722-737.	0.5	71
49	Distinct role of heme oxygenase-1 in early- and late-stage intracerebral hemorrhage in 12-month-old mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 25-38.	4.3	70
50	Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson's disease. Pharmacogenetics and Genomics, 2003, 13, 365-369.	5.7	68
51	Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: Correlation with brain edema. Neurochemistry International, 2010, 57, 248-253.	3 . 8	66
52	Inflammatory responses after intracerebral hemorrhage: From cellular function to therapeutic targets. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 184-186.	4.3	66
53	Polyinosinic-Polycytidylic Acid Has Therapeutic Effects against Cerebral Ischemia/Reperfusion Injury through the Downregulation of TLR4 Signaling via TLR3. Journal of Immunology, 2014, 192, 4783-4794.	0.8	65
54	Inhibition of tPA-induced hemorrhagic transformation involves adenosine A2b receptor activation after cerebral ischemia. Neurobiology of Disease, 2017, 108, 173-182.	4.4	65

#	Article	IF	CITATIONS
55	Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain, Behavior, and Immunity, 2018, 69, 568-581.	4.1	65
56	PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiology of Aging, 2015, 36, 1439-1450.	3.1	63
57	Src regulates angiogenic factors and vascular permeability after focal cerebral ischemia–reperfusion. Neuroscience, 2014, 262, 118-128.	2.3	62
58	Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain, Behavior, and Immunity, 2015, 43, 172-183.	4.1	60
59	Microglial Depletion with Clodronate Liposomes Increases Proinflammatory Cytokine Levels, Induces Astrocyte Activation, and Damages Blood Vessel Integrity. Molecular Neurobiology, 2019, 56, 6184-6196.	4.0	60
60	Inhibition of Cathepsin S Produces Neuroprotective Effects after Traumatic Brain Injury in Mice. Mediators of Inflammation, 2013, 2013, 1-11.	3.0	58
61	Hypoxia stimulates neural stem cell proliferation by increasing HIF"â€~1α expression and activating Wnt/β-catenin signaling. Cellular and Molecular Biology, 2017, 63, 12-19.	0.9	58
62	Expression of Tmem119/Sall1 and Ccr2/CD69 in FACS-Sorted Microglia- and Monocyte/Macrophage-Enriched Cell Populations After Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2018, 12, 520.	3.7	57
63	Expression and cellular localization of cyclooxygenases and prostaglandin E synthases in the hemorrhagic brain. Journal of Neuroinflammation, 2011, 8, 22.	7.2	56
64	Pharmacologic activation of cholinergic alpha7 nicotinic receptors mitigates depressive-like behavior in a mouse model of chronic stress. Journal of Neuroinflammation, 2017, 14, 234.	7.2	56
65	Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. Journal of Neuroinflammation, 2018, 15, 188.	7.2	56
66	Interleukinâ€23 Secreted by Activated Macrophages Drives γÎT Cell Production of Interleukinâ€17 to Aggravate Secondary Injury After Intracerebral Hemorrhage. Journal of the American Heart Association, 2016, 5, .	3.7	54
67	Protective Effects of Chinese Herbal Medicine Rhizoma drynariae in Rats After Traumatic Brain Injury and Identification of Active Compound. Molecular Neurobiology, 2016, 53, 4809-4820.	4.0	54
68	A20 Ameliorates Intracerebral Hemorrhage–Induced Inflammatory Injury by Regulating TRAF6 Polyubiquitination. Journal of Immunology, 2017, 198, 820-831.	0.8	54
69	Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain, Behavior, and Immunity, 2021, 94, 437-457.	4.1	54
70	Cerebroprotection by the neuronal PGE ₂ receptor EP2 after intracerebral hemorrhage in middle-aged mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 39-51.	4.3	53
71	Astrocytic Toll-Like Receptor 3 Is Associated with Ischemic Preconditioning- Induced Protection against Brain Ischemia in Rodents. PLoS ONE, 2014, 9, e99526.	2.5	52
72	Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Frontiers in Neurology, 2021, 12, 667511.	2.4	51

#	Article	IF	Citations
73	Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain, Behavior, and Immunity, 2013, 34, 56-66.	4.1	50
74	<scp>TLR</scp> 3 ligand Poly <scp>IC</scp> Attenuates Reactive Astrogliosis and Improves Recovery of Rats after Focal Cerebral Ischemia. CNS Neuroscience and Therapeutics, 2015, 21, 905-913.	3.9	50
75	The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain Research, 2008, 1222, 214-221.	2.2	49
76	GSK- $3\hat{l}^2$ as a target for protection against transient cerebral ischemia. International Journal of Medical Sciences, 2017, 14, 333-339.	2.5	48
77	ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset. Movement Disorders, 2002, 17, 767-771.	3.9	46
78	Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice. Neurobiology of Aging, 2016, 42, 13-24.	3.1	46
79	The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Experimental Neurology, 2018, 301, 13-25.	4.1	46
80	Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget, 2017, 8, 3553-3567.	1.8	44
81	Organotypic Hippocampal Slices as Models for Stroke and Traumatic Brain Injury. Molecular Neurobiology, 2016, 53, 4226-4237.	4.0	43
82	Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB Journal, 2020, 34, 2774-2791.	0.5	43
83	Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF–VEGFR2 signaling pathway in a rat model of vascular dementia. Behavioural Brain Research, 2014, 265, 171-180.	2.2	42
84	Microglial activation and intracerebral hemorrhage. Acta Neurochirurgica Supplementum, 2008, 105, 51-53.	1.0	42
85	Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Molecular Neurobiology, 2017, 54, 571-581.	4.0	41
86	MicroRNA-182 Alleviates Neuropathic Pain by Regulating Nav1.7 Following Spared Nerve Injury in Rats. Scientific Reports, 2018, 8, 16750.	3.3	41
87	20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1531-1543.	4.3	41
88	Cloning, expression and subcellular localization of HN1 and HN1L genes, as well as characterization of their orthologs, defining an evolutionarily conserved gene family. Gene, 2004, 331, 115-123.	2,2	38
89	Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: Correlations with angiogenesis and cerebral edema. Neurochemistry International, 2011, 58, 872-879.	3.8	38
90	Wharton's Jelly Transplantation Improves Neurologic Function in a Rat Model of Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2015, 35, 641-649.	3.3	38

#	Article	IF	Citations
91	Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson's disease. Neuroscience Letters, 2004, 355, 193-196.	2.1	35
92	Hippo/YAP signaling pathway mitigates blood-brain barrier disruption after cerebral ischemia/reperfusion injury. Behavioural Brain Research, 2019, 356, 8-17.	2.2	35
93	Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury. Brain, Behavior, and Immunity, 2017, 64, 344-353.	4.1	34
94	CXCR4+CD45â [^] BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain, Behavior, and Immunity, 2015, 45, 98-108.	4.1	33
95	Danshen-Chuanxiong-Honghua Ameliorates Cerebral Impairment and Improves Spatial Cognitive Deficits after Transient Focal Ischemia and Identification of Active Compounds. Frontiers in Pharmacology, 2017, 8, 452.	3.5	33
96	No association between paraoxonase 1 (PON1) gene polymorphisms and susceptibility to Parkinson's disease in a Chinese population. Movement Disorders, 2000, 15, 1265-1267.	3.9	31
97	Roflumilast Reduces Cerebral Inflammation in a Rat Model of Experimental Subarachnoid Hemorrhage. Inflammation, 2017, 40, 1245-1253.	3.8	31
98	Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia. Behavioural Brain Research, 2013, 250, 222-229.	2.2	30
99	Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Scientific Reports, 2017, 7, 45696.	3.3	30
100	Preconditioning with VEGF Enhances Angiogenic and Neuroprotective Effects of Bone Marrow Mononuclear Cell Transplantation in a Rat Model of Chronic Cerebral Hypoperfusion. Molecular Neurobiology, 2016, 53, 6057-6068.	4.0	29
101	Pharmacokinetic Study of 7 Compounds Following Oral Administration of Fructus Aurantii to Depressive Rats. Frontiers in Pharmacology, 2018, 9, 131.	3.5	29
102	CD40 ligand as a potential biomarker for atherosclerotic instability. Neurological Research, 2013, 35, 693-700.	1.3	28
103	Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3422-3432.	4.3	28
104	Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood–Brain Barrier Breakdown. Cells, 2021, 10, 1009.	4.1	28
105	ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice. Behavioural Brain Research, 2017, 316, 145-151.	2.2	27
106	Dopamine D5 receptor gene polymorphism and the risk of levodopa-induced motor fluctuations in patients with Parkinson's disease. Neuroscience Letters, 2001, 308, 21-24.	2.1	26
107	Alpha-7 Nicotinic Receptor Signaling Pathway Participates in the Neurogenesis Induced by ChAT-Positive Neurons in the Subventricular Zone. Translational Stroke Research, 2017, 8, 484-493.	4.2	23
108	Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cellular and Molecular Neurobiology, 2022, 42, 621-646.	3.3	22

#	Article	IF	Citations
109	Effects of crenolanib, a nonselective inhibitor of PDGFR, in a mouse model of transient middle cerebral artery occlusion. Neuroscience, 2017, 364, 202-211.	2.3	21
110	Translational Intracerebral Hemorrhage: a Need for Transparent Descriptions of Fresh Tissue Sampling and Preclinical Model Quality. Translational Stroke Research, 2015, 6, 384-389.	4.2	20
111	Environmental Circadian Disruption Worsens Neurologic Impairment and Inhibits Hippocampal Neurogenesis in Adult Rats After Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2016, 36, 1045-1055.	3.3	20
112	Profiling of Blood-Brain Barrier Disruption in Mouse Intracerebral Hemorrhage Models: Collagenase Injection vs. Autologous Arterial Whole Blood Infusion. Frontiers in Cellular Neuroscience, 2021, 15, 699736.	3.7	20
113	18F-FNDP for PET Imaging of Soluble Epoxide Hydrolase. Journal of Nuclear Medicine, 2016, 57, 1817-1822.	5.0	19
114	Pharmacokinetic study of representative anti-oxidative compounds from Denshen-Chuanxiong-Honghua following oral administration in rats. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1052, 82-90.	2.3	17
115	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
116	Propofol Increases Expression of Basic Fibroblast Growth Factor After Transient Cerebral Ischemia in Rats. Neurochemical Research, 2013, 38, 530-537.	3.3	16
117	Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Research, 2013, 1537, 283-289.	2.2	15
118	Effects of an amyloid-beta 1-42 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice. Brain Research, 2016, 1635, 169-179.	2.2	15
119	Nrf2-BDNF-TrkB pathway contributes to cortical hemorrhage-induced depression, but not sex differences. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3288-3301.	4.3	15
120	COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. Journal of Inflammation Research, 2022, Volume 15, 2181-2198.	3.5	15
121	Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. Brain Hemorrhages, 2020, 1, 99-104.	1.0	14
122	Cloning and Characterization of a Novel Human RNA Binding Protein Gene PNO1. DNA Sequence, 2004, 15, 219-224.	0.7	13
123	GLP-1R Agonist Exendin-4 Protects Against Hemorrhagic Transformation Induced by rtPA After Ischemic Stroke via the Wnt/β-Catenin Signaling Pathway. Molecular Neurobiology, 2022, 59, 3649-3664.	4.0	13
124	Association between platelet activation and fibrinolysis in acute stroke patients. Neuroscience Letters, 2005, 384, 305-309.	2.1	12
125	Diet-Induced High Serum Levels of Trimethylamine-N-oxide Enhance the Cellular Inflammatory Response without Exacerbating Acute Intracerebral Hemorrhage Injury in Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	4.0	12
126	Lack of association between cytochrome P450 2E1 gene polymorphisms and Parkinson's disease in a Chinese population. Movement Disorders, 2000, 15, 1267-1269.	3.9	11

#	Article	IF	CITATIONS
127	Allele frequencies for nine PCR-typed STR loci in a population from middle China. Forensic Science International, 2002, 127, 145-146.	2.2	9
128	General Practitioner Education Reform in China: Most Undergraduate Medical Students do not Choose General Practitioner as a Career Under the 5+3 Model. Health Professions Education, 2018, 4, 127-132.	1.4	9
129	Meta-analysis of stem cell transplantation for reflex hypersensitivity after spinal cord injury. Neuroscience, 2017, 363, 66-75.	2.3	8
130	Behavioral assessment of post-stroke depression and anxiety in rodents. Brain Hemorrhages, 2020, 1, 105-111.	1.0	8
131	Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BioMed Research International, 2020, 2020, 1-9.	1.9	7
132	Rationale and Design of a Randomized, Double-Blind Trial Evaluating the Efficacy of Tranexamic Acid on Hematoma Expansion and Peri-hematomal Edema in Patients with Spontaneous Intracerebral Hemorrhage within 4.5Åh after Symptom Onset: The THE-ICH Trial Protocol. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105136.	1.6	7
133	Autologous Bone Marrow Mononuclear Cell Transplantation Delays Progression of Carotid Atherosclerosis in Rabbits. Molecular Neurobiology, 2016, 53, 4387-4396.	4.0	6
134	Pharmacokinetic study of the prokinetic ABCs liquiritigenin, naringenin and hesperitin following the oral administration of Si–Ni–San decoction to functional dyspepsia patients. Xenobiotica, 2019, 49, 708-717.	1.1	6
135	The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurological Research, 2022, 44, 65-89.	1.3	6
136	Blood Culture-Negative but Clinically Diagnosed Infective Endocarditis Complicated by Intracranial Mycotic Aneurysm, Brain Abscess, and Posterior Tibial Artery Pseudoaneurysm. Case Reports in Neurological Medicine, 2018, 2018, 1-5.	0.4	4
137	Therapeutic Potential of Intranasal Drug Delivery in Preclinical Studies of Ischemic Stroke and Intracerebral Hemorrhage. Springer Series in Translational Stroke Research, 2019, , 27-42.	0.1	3
138	Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology, 2002, 58, 837-838.	1.1	2
139	Transplantation of Autologous Bone Marrow Mononuclear Cells Regulates Inflammation in a Rabbit Model of Carotid Artery Atherosclerosis. Journal of Vascular Research, 2016, 53, 196-205.	1.4	2
140	Systematic analysis of critical genes and pathways identified a signature of neuropathic pain after spinal cord injury. European Journal of Neuroscience, 2022, 56, 3991-4008.	2.6	2
141	Ferroptosis in Nervous System Diseases. , 2019, , 173-195.		1
142	Flavanol (â^')-epicatechin protects against hemorrhagic stroke by modulating NF-E2-related factor 2-dependent and -independent pathways. Journal of Neuroimmunology, 2014, 275, 215-216.	2.3	0
143	ISDN2014_0230: The role of EP2 after intracerebral hemorrhage. International Journal of Developmental Neuroscience, 2015, 47, 70-70.	1.6	0
144	Inhibiting Ferroptosis â€" A New Hope For Intracerebral Hemorrhage Therapy. , 2018, , .		0

#	Article	IF	CITATIONS
145	Intranasal Delivery of Drugs for Ischemic Stroke Treatment: Targeting IL-17A. Springer Series in Translational Stroke Research, 2019, , 91-99.	0.1	0