Min Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278238/publications.pdf

Version: 2024-02-01

110170 70961 4,484 93 41 64 citations h-index g-index papers 93 93 93 5496 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Applied Catalysis B: Environmental, 2018, 220, 397-408.	10.8	265
2	Size- and morphology-controlled NH2-MIL-53(Al) prepared in DMF–water mixed solvents. Dalton Transactions, 2013, 42, 13698.	1.6	221
3	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	1.3	200
4	Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chemical Engineering Journal, 2015, 281, 360-367.	6.6	189
5	Solvothermal synthesis of NH ₂ -MIL-125(Ti) from circular plate to octahedron. CrystEngComm, 2014, 16, 9645-9650.	1.3	187
6	Synthesis of Hollow Nanocubes and Macroporous Monoliths of Silicalite-1 by Alkaline Treatment. Chemistry of Materials, 2013, 25, 4197-4205.	3.2	156
7	Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 7479-7487.	7.8	145
8	Nanomorphology-Enhanced Gas-Evolution Intensifies CO ₂ Reduction Electrochemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 4031-4040.	3.2	135
9	Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 2017, 4, 144-153.	3.0	131
10	Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. Journal of CO2 Utilization, 2017, 21, 100-107.	3.3	100
11	High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts. Catalysis Today, 2010, 149, 143-147.	2.2	97
12	In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorganic Chemistry Frontiers, 2017, 4, 1870-1880.	3.0	96
13	Selective CO ₂ Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10182-10190.	3.2	95
14	Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals. ACS Nano, 2016, 10, 7401-7408.	7.3	88
15	Interconnected Hierarchical ZSM-5 with Tunable Acidity Prepared by a Dealumination–Realumination Process: A Superior MTP Catalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26096-26106.	4.0	84
16	Hydrothermally stable MOFs for CO 2 hydrogenation over iron-based catalyst to light olefins. Journal of CO2 Utilization, 2016, 15, 89-95.	3.3	82
17	Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene. Catalysis Today, 2011, 160, 179-183.	2.2	80
18	Effective Hydrolysis of Cellulose into Glucose over Sulfonated Sugar-Derived Carbon in an Ionic Liquid. Industrial & Description (Section 2013) (1988) Engineering Chemistry Research, 2013, 52, 8167-8173.	1.8	77

#	Article	IF	CITATIONS
19	CO ₂ Hydrogenation to Hydrocarbons over Iron-based Catalyst: Effects of Physicochemical Properties of Al ₂ O ₃ Supports. Industrial & Engineering Chemistry Research, 2014, 53, 17563-17569.	1.8	76
20	C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts. Applied Catalysis B: Environmental, 2011, 107, 68-76.	10.8	69
21	Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. RSC Advances, 2015, 5, 17897-17904.	1.7	67
22	SO3H-functionalized ionic liquids for selective alkylation of m-cresol with tert-butanol. Catalysis Communications, 2008, 9, 1-7.	1.6	64
23	Synthesis of yolk–shell HPW@Hollow silicalite-1 for esterification reaction. Chemical Communications, 2014, 50, 4846.	2.2	61
24	Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous and Mesoporous Materials, 2014, 196, 18-30.	2.2	56
25	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	1.8	56
26	Effects of Monocarboxylic Acid Additives on Synthesizing Metal–Organic Framework NH ₂ -MIL-125 with Controllable Size and Morphology. Crystal Growth and Design, 2017, 17, 6586-6595.	1.4	55
27	Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks. Nanoscale, 2015, 7, 9738-9745.	2.8	53
28	Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 2016, 1, 1034-1040.	1.6	53
29	Porous Solid Superacid SO ₄ 6:\(\sup\)2\(\alpha\)6:\(\sup\)7\(\sup\)7\(\sup\)7\(\sup\)7\(\sup\)8\(\su	1.8	50
30	Enhanced Catalytic Performance of Titanium Silicaliteâ€1 in Tuning the Crystal Size in the Range 1200–200 nm in a Tetrapropylammonium Bromide System. ChemCatChem, 2015, 7, 2660-2668.	1.8	50
31	Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm, 2015, 17, 7160-7168.	1.3	50
32	Surfactant-assisted synthesis of hierarchical NH ₂ -MIL-125 for the removal of organic dyes. RSC Advances, 2017, 7, 581-587.	1.7	50
33	The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science and Technology, 2014, 4, 2639.	2.1	47
34	Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene. Catalysis Today, 2010, 156, 69-73.	2.2	46
35	Bridging chemical- and bio-catalysis: high-value liquid transportation fuel production from renewable agricultural residues. Green Chemistry, 2017, 19, 660-669.	4.6	46
36	SO ₃ H-Functionalized Ionic Liquids for Selective Alkylation of <i>p</i> -Cresol with <i>tert</i> -Butanol. Industrial & Engineering Chemistry Research, 2008, 47, 5298-5303.	1.8	44

#	Article	IF	Citations
37	Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction. Chinese Journal of Catalysis, 2013, 34, 1148-1158.	6.9	44
38	Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons. RSC Advances, 2014, 4, 8930.	1.7	44
39	Effects of Cesium Ions and Cesium Oxide in Side-Chain Alkylation of Toluene with Methanol over Cesium-Modified Zeolite X. Industrial & Engineering Chemistry Research, 2016, 55, 1849-1858.	1.8	44
40	Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catalysis Today, 2017, 297, 335-343.	2.2	44
41	Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 2016, 45, 7952-7959.	1.6	43
42	Mesoporous/Microporous Titanium Silicalite with Controllable Pore Diameter for Cyclohexene Epoxidation. Industrial & Engineering Chemistry Research, 2018, 57, 512-520.	1.8	38
43	Facile preparation of $Sn-\hat{l}^2$ zeolites by post-synthesis (isomorphous substitution) method for isomerization of glucose to fructose. Chinese Journal of Catalysis, 2014, 35, 723-732.	6.9	35
44	Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon toward High Selectivity of Light Olefins in CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 4017-4023.	1.8	35
45	Ethylation of coking benzene over nanoscale HZSM-5 zeolites: Effects of hydrothermal treatment, calcination and La2O3 modification. Applied Catalysis A: General, 2009, 355, 184-191.	2.2	33
46	A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catalysis Science and Technology, 2015, 5, 3159-3165.	2.1	33
47	Templated fabrication of hierarchically porous Fe–Ti bimetallic solid superacid for efficient photochemical oxidation of azo dyes under visible light. Chemical Engineering Journal, 2014, 244, 296-306.	6.6	31
48	The promoting effects of alkali metal oxide in side-chain alkylation of toluene with methanol over basic zeolite X. Microporous and Mesoporous Materials, 2016, 234, 61-72.	2.2	31
49	Facile synthesis of mesoporous silica nanoparticles with controlled morphologies using water–acetone media. Solid State Sciences, 2010, 12, 267-273.	1.5	28
50	Effect of titanium ester on synthesizing NH2-MIL-125(Ti): Morphology changes from circular plate to octahedron and rhombic dodecahedron. Journal of Solid State Chemistry, 2018, 262, 237-243.	1.4	28
51	Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene. Journal of Energy Chemistry, 2018, 27, 1225-1230.	7.1	28
52	One-pot hydrothermal synthesis of mesoporous silica nanoparticles using formaldehyde as growth suppressant. Microporous and Mesoporous Materials, 2012, 152, 9-15.	2.2	27
53	New insight into the alkylation-efficiency of methanol with toluene over ZSM-5: Microporous diffusibility significantly affects reacting-pathways. Microporous and Mesoporous Materials, 2019, 282, 252-259.	2.2	26
54	Efficient synthesis and sulfonation of ordered mesoporous carbon materials. Journal of Colloid and Interface Science, 2012, 377, 18-26.	5.0	25

#	Article	IF	CITATIONS
55	Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol. Journal of Energy Chemistry, 2014, 23, 491-497.	7.1	25
56	SO ₃ H-Functionalized Ionic Liquid Catalyzed Alkylation of Catechol with <i>tert</i> Alcohol. Industrial & Engineering Chemistry Research, 2010, 49, 8157-8163.	1.8	22
57	Role of Supports in the Tetrapropylammonium Hydroxide Treated Titanium Silicalite-1 Extrudates. Industrial & Engineering Chemistry Research, 2015, 54, 1513-1519.	1.8	22
58	Methanol Usage in Toluene Methylation over Pt Modified ZSM-5 Catalyst: Effects of Total Pressure and Carrier Gas. Industrial & Engineering Chemistry Research, 2017, 56, 4709-4717.	1.8	22
59	Influence of Diffusion and Acid Properties on Methane and Propane Selectivity in Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 1896-1905.	1.8	22
60	Synthesis of Silica Nanotubes with Orientation Controlled Mesopores in Porous Membranes via Interfacial Growth. Chemistry of Materials, 2012, 24, 1005-1010.	3.2	21
61	Facile one-step synthesis of hierarchical porous carbon monoliths as superior supports of Fe-based catalysts for CO ₂ hydrogenation. RSC Advances, 2016, 6, 10831-10836.	1.7	20
62	Characterization of Ti-ZSM-5 Prepared by Isomorphous Substitution of B-ZSM-5 with TiCl ₄ and Its Performance in the Hydroxylation of Phenol. Industrial & Engineering Chemistry Research, 2010, 49, 2194-2199.	1.8	19
63	In Situ Aluminum Migration into Zeolite Framework during Methanol-To-Propylene Reaction: An Innovation To Design Superior Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 8190-8199.	1.8	18
64	Shape-selective methylation of 2-methylnaphthalene with methanol over hydrothermal treated HZSM-5 zeolite catalysts. Chemical Engineering Science, 2008, 63, 5298-5303.	1.9	17
65	Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5, 29509-29512.	1.7	16
66	Cu ₂ O Mediated Synthesis of Metal–Organic Framework UiO-66 in Nanometer Scale. Crystal Growth and Design, 2017, 17, 685-692.	1.4	15
67	Methylation of 2-Methylnaphthalene with Methanol over NH4F and Pt Modified HZSM-5 Catalysts. Chinese Journal of Chemical Engineering, 2010, 18, 742-749.	1.7	14
68	Enhanced Catalytic Activity on Postâ€Synthesized Hollow Titanium Silicaliteâ€1 with High Titanium Content on the External Surface. ChemistrySelect, 2016, 1, 6160-6166.	0.7	14
69	Improved Catalytic Performance for 1-Butene Epoxidation over Titanium Silicalite-1 Extrudates by Using SBA-15 or Carborundum as Additives. Industrial & Engineering Chemistry Research, 2017, 56, 7462-7467.	1.8	14
70	Stable Zn@ZSM-5 catalyst via a dry gel conversion process for methanol-to-aromatics reaction. Microporous and Mesoporous Materials, 2021, 312, 110696.	2.2	14
71	Coke-resistant (PtÂ+ÂNi)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252, 117529.	1.9	14
72	Facile synthesis of B-MCM-41 with controlled morphologies using water–acetone media. Microporous and Mesoporous Materials, 2011, 139, 31-37.	2.2	12

#	Article	IF	CITATIONS
73	Effect of (n)SiO2/(n)B2O3 in the precursor on chemical–physics properties of Ti-ZSM-5 synthesized by gas–solid method. Catalysis Today, 2004, 93-95, 659-664.	2.2	11
74	Oxalic Acid Modification of β Zeolite for Dehydration of 2-(4′-Ethylbenzoyl) Benzoic Acid. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 8850-8856.	1.8	11
75	A Facile Strategy to Prepare Shaped ZSM-5 Catalysts with Enhanced Para-Xylene Selectivity and Stability for Toluene Methylation: The Effect of In Situ Modification by Attapulgite. Molecules, 2019, 24, 3462.	1.7	11
76	Role of Acidity in the Ethylation of Coking Benzene with Ethanol over Nanosized HZSM-5. Industrial & Samp; Engineering Chemistry Research, 2010, 49, 506-514.	1.8	9
77	Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity. Catalysis Science and Technology, 2020, 10, 6152-6160.	2.1	9
78	Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to <i>para</i> -xylene. Inorganic Chemistry Frontiers, 2022, 9, 3348-3358.	3.0	9
79	Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 14381-14396.	1.8	8
80	Dehydration of 2-(4′-Ethylbenzoyl)-benzoic Acid to 2-Ethylanthraquinone over Hβ Zeolite Modified with Organic Acids. Chinese Journal of Catalysis, 2009, 30, 9-13.	6.9	7
81	The High-PerformanceÂHollow Silicalite-1@Titanium Silicalite-1ÂCore-Shell Catalyst for Propene Epoxidation. ChemistrySelect, 2017, 2, 10097-10100.	0.7	7
82	Promising Strategy to Synthesize ZSM-5@Silicalite-1 with Superior Catalytic Performance for Catalytic Cracking Reactions. Industrial & Engineering Chemistry Research, 2021, 60, 9098-9106.	1.8	7
83	Role of Recrystallization in Alkaline Treatment on the Catalytic Activity of 1â€Butene Epoxidation. ChemCatChem, 2020, 12, 6196-6204.	1.8	6
84	From nano aggregates to nano plates: The roles of gelatin in the crystallization of titanium silicate-1. Microporous and Mesoporous Materials, 2021, 321, 111100.	2.2	6
85	Kinetics simulation of propylene epoxidation over different Ti species in TS â€1. AICHE Journal, 2021, 67, e17261.	1.8	5
86	Influence of Al Coordinates on Hierarchical Structure and T Atoms Redistribution during Base Leaching of ZSM-5. Industrial & Samp; Engineering Chemistry Research, 0, , .	1.8	4
87	Gas-phase propene epoxidation over Ag/TS-1 prepared by plasma sputtering. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 447-457.	0.8	3
88	The influence of the acid source on the structural and anti-oxidation properties of ordered mesoporous carbons. RSC Advances, 2013, 3, 25050.	1.7	3
89	Synthesis of Diethyl Toluene Diamine by Zeolite-Catalyzed Ethylation of 2,4-Toluene Diamine. Industrial & Lamp; Engineering Chemistry Research, 2015, 54, 7364-7372.	1.8	3
90	Bulky macroporous titanium silicalite-1 free of extraframework titanium for phenol hydroxylation. Microporous and Mesoporous Materials, 2022, 336, 111884.	2.2	3

#	Article	IF	CITATIONS
91	Ethanol-to-hydrocarbons reaction over HZSM-5: Enhanced ethanol/ethylene into C3+ hydrocarbons conversion by pristine external BrĶnsted acid sites. Microporous and Mesoporous Materials, 2022, 335, 111824.	2.2	2
92	Hollow Crystals: Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes (Adv. Funct. Mater. 48/2015). Advanced Functional Materials, 2015, 25, 7478-7478.	7.8	1
93	Coordination States and Catalytic Performance of Ti in Titanium Silicalite-1., 2020, , .		0