Seogchan Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278213/publications.pdf Version: 2024-02-01

SEOCCHAN KANC

#	Article	IF	CITATIONS
1	Multi-Pronged Investigation of Volatile Compound-Mediated Interactions of Fusarium oxysporum with Plants, Fungi, and Bacteria. Methods in Molecular Biology, 2022, 2391, 109-127.	0.4	1
2	Time-Lapse Imaging of Root Pathogenesis and Fungal Proliferation Without Physically Disrupting Roots. Methods in Molecular Biology, 2022, 2391, 153-170.	0.4	0
3	A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Molecular Plant Pathology, 2022, 23, 400-416.	2.0	12
4	<i>Phytophthora</i> spp. Associated with Appalachian Oak Forests and Waterways in Pennsylvania, with <i>P</i> . <i>abietivora</i> as a Pathogen of Five Native Woody Plant Species. Plant Disease, 2022, 106, 1143-1156.	0.7	8
5	Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biology, 2022, 19, 373-386.	1.5	12
6	Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. Phytopathology, 2022, 112, 981-995.	1.1	2
7	FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for <i>Fusarium</i> Species Identification. Plant Disease, 2022, 106, 1610-1616.	0.7	27
8	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	1.1	107
9	Harnessing Chemical Ecology for Environment-Friendly Crop Protection. Phytopathology, 2021, 111, 1697-1710.	1.1	11
10	Evaluation of multi-color genetically encoded Ca2+ indicators in filamentous fungi. Fungal Genetics and Biology, 2021, 149, 103540.	0.9	2
11	First Report of <i>Aloe vera</i> Rust Caused by <i>Uromyces aloes</i> in an Ornamental Nursery in the United States. Plant Disease, 2021, 105, 3739.	0.7	0
12	Optimization of <i>Agrobacterium tumefaciens</i> -Mediated Transformation of <i>Xylaria grammica</i> EL000614, an Endolichenic Fungus Producing Grammicin. Mycobiology, 2021, 49, 491-497.	0.6	1
13	First report of Fusarium equiseti causing wilt on lentils (Lens culinaris Medik.) in Pakistan. Journal of Plant Pathology, 2020, 102, 571-571.	0.6	1
14	Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 2020, 11, 5845.	5.8	75
15	Phytophthora Diversity in Pennsylvania Nurseries and Greenhouses Inferred from Clinical Samples Collected over Four Decades. Microorganisms, 2020, 8, 1056.	1.6	19
16	Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Scientific Reports, 2020, 10, 16586.	1.6	8
17	Metabolomics, an Essential Tool in Exploring and Harnessing Microbial Chemical Ecology. Phytobiomes Journal, 2020, 4, 195-210.	1.4	16
18	Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes, 2020, 11, 478.	1.0	17

#	Article	IF	CITATIONS
19	Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Frontiers in Microbiology, 2019, 10, 2575.	1.5	31
20	Secreted metabolite-mediated interactions between rhizosphere bacteria and Trichoderma biocontrol agents. PLoS ONE, 2019, 14, e0227228.	1.1	22
21	Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen <i>Verticillium dahliae</i> Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Molecular Plant-Microbe Interactions, 2019, 32, 639-653.	1.4	28
22	I Plate-based Assay for Studying How Fungal Volatile Compounds (VCs) Affect Plant Growth and Development and the Identification of VCs via SPME-GC-MS. Bio-protocol, 2019, 9, e3166.	0.2	3
23	Do volatile compounds produced by <i>Fusarium oxysporum</i> and <i>Verticillium dahliae</i> affect stress tolerance in plants?. Mycology, 2018, 9, 166-175.	2.0	31
24	Roles of three Fusarium graminearum membrane Ca2+ channels in the formation of Ca2+ signatures, growth, development, pathogenicity and mycotoxin production. Fungal Genetics and Biology, 2018, 111, 30-46.	0.9	24
25	Volatile Compound-Mediated Recognition and Inhibition Between Trichoderma Biocontrol Agents and Fusarium oxysporum. Frontiers in Microbiology, 2018, 9, 2614.	1.5	85
26	Volatile Compounds Emitted by Diverse <i>Verticillium</i> Species Enhance Plant Growth by Manipulating Auxin Signaling. Molecular Plant-Microbe Interactions, 2018, 31, 1021-1031.	1.4	36
27	The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. MBio, 2017, 8, .	1.8	30
28	Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association. Frontiers in Plant Science, 2016, 7, 186.	1.7	165
29	Stop and smell the fungi: Fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biology Reviews, 2016, 30, 134-144.	1.9	70
30	Development of a transformation system for Hirsutella spp. and visualization of the mode of nematode infection by GFP-labeled H. minnesotensis. Scientific Reports, 2015, 5, 10477.	1.6	9
31	Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling. Frontiers in Microbiology, 2015, 6, 1248.	1.5	96
32	DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica, 2015, 43, 583-595.	0.6	275
33	Roles of three Fusarium oxysporum calcium ion (Ca2+) channels in generating Ca2+ signatures and controlling growth. Fungal Genetics and Biology, 2015, 82, 145-157.	0.9	19
34	The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections. Applied and Environmental Microbiology, 2015, 81, 5671-5674.	1.4	33
35	Plant Pathology 2.0. Molecular Plant Pathology, 2014, 15, 315-318.	2.0	4

#	Article	IF	CITATIONS
37	Successful Agrobacterium mediated transformation of Thielaviopsis basicola by optimizing multiple conditions. Fungal Biology, 2014, 118, 675-682.	1.1	5
38	Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae. Plant Pathology Journal, 2014, 30, 136-150.	0.7	23
39	<i>Phytophthora</i> Database 2.0: Update and Future Direction. Phytopathology, 2013, 103, 1204-1208.	1.1	16
40	Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology, 2013, 52, 20-31.	0.9	366
41	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	1.1	219
42	Sniffing on Microbes: Diverse Roles of Microbial Volatile Organic Compounds in Plant Health. Molecular Plant-Microbe Interactions, 2013, 26, 835-843.	1.4	269
43	Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus. PLoS Pathogens, 2013, 9, e1003350.	2.1	61
44	CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Research, 2013, 41, D714-D719.	6.5	51
45	Agrobacterium tumefaciens-Mediated Transformation of the Lichen Fungus, Umbilicaria muehlenbergii. PLoS ONE, 2013, 8, e83896.	1.1	42
46	Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races. PLoS ONE, 2013, 8, e61360.	1.1	49
47	The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genetics and Biology, 2012, 49, 271-283.	0.9	82
48	Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca2+ signatures associated with polarized growth, development, and pathogenesis. Fungal Genetics and Biology, 2012, 49, 589-601.	0.9	48
49	Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 2012, 13, 525.	1.2	150
50	Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and <i>Fusarium MLST</i> . Mycologia, 2012, 104, 427-445.	0.8	164
51	Real-time PCR Detection of <i>Rhodococcus fascians</i> and Discovery of New Plants Associated with <i>R. fascians</i> in Pennsylvania. Plant Health Progress, 2012, 13, .	0.8	12
52	Atomic Force Microscopy: A Tool for Studying Biophysical Surface Properties Underpinning Fungal Interactions with Plants and Substrates. Methods in Molecular Biology, 2012, 835, 151-164.	0.4	3
53	Loss of cAMP-Dependent Protein Kinase A Affects Multiple Traits Important for Root Pathogenesis by <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2011, 24, 719-732.	1.4	44
54	<i>>VdSNF1</i> , the Sucrose Nonfermenting Protein Kinase Gene of <i>Verticillium dahliae</i> , Is Required for Virulence and Expression of Genes Involved in Cell-Wall Degradation. Molecular Plant-Microbe Interactions, 2011, 24, 129-142.	1.4	111

#	Article	IF	CITATIONS
55	Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucleic Acids Research, 2011, 39, D640-D646.	6.5	63
56	Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. PLoS Pathogens, 2011, 7, e1002137.	2.1	477
57	Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth, and reduced blossom-end rot of tomato fruits in a hydroponic system. European Journal of Plant Pathology, 2010, 126, 1-11.	0.8	31
58	Fungal Secretome Database: Integrated platform for annotation of fungal secretomes. BMC Genomics, 2010, 11, 105.	1.2	160
59	Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 2010, 29, 1406-1412.	1.0	17
60	Functional characterization and manipulation of the apicidin biosynthetic pathway in <i>Fusarium semitectum</i> . Molecular Microbiology, 2010, 76, 456-466.	1.2	54
61	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	13.7	1,442
62	Multilocus phylogenetics show high levels of endemic fusaria inhabiting Sardinian soils (Tyrrhenian) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5
63	Translocation of <i>Magnaporthe oryzae</i> Effectors into Rice Cells and Their Subsequent Cell-to-Cell Movement A. Plant Cell, 2010, 22, 1388-1403.	3.1	426
64	Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections. Journal of Clinical Microbiology, 2010, 48, 3708-3718.	1.8	446
65	Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology, 2010, 47, 406-415.	0.9	100
66	The Promise and Pitfalls of Sequence-Based Identification of Plant-Pathogenic Fungi and Oomycetes. Phytopathology, 2010, 100, 732-737.	1.1	72
67	Rice Blast Fungus (<i>Magnaporthe oryzae</i>) Infects Arabidopsis via a Mechanism Distinct from That Required for the Infection of Rice Â. Plant Physiology, 2009, 149, 474-486.	2.3	63
68	The ER Chaperone LHS1 Is Involved in Asexual Development and Rice Infection by the Blast Fungus <i>Magnaporthe oryzae</i> Â Â Â. Plant Cell, 2009, 21, 681-695.	3.1	126
69	IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes. BMC Genomics, 2009, 10, 148.	1.2	17
70	Infection Biology of Moniliophthora perniciosa on Theobroma cacao and Alternate Solanaceous Hosts. Tropical Plant Biology, 2009, 2, 149-160.	1.0	30
71	A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology, 2009, 46, 936-948.	0.9	275
72	Ratios of Cells With and Without Virulence Genes in <i>Rhodococcus fascians</i> Populations Correlate with Degrees of Symptom Development. Plant Disease, 2009, 93, 499-506.	0.7	21

#	Article	IF	CITATIONS
73	Fungal cytochrome P450 database. BMC Genomics, 2008, 9, 402.	1.2	134
74	SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics, 2008, 9, 586.	1.2	17
75	Phytophthora quercetorum sp. nov., a novel species isolated from eastern and north-central USA oak forest soils. Mycological Research, 2008, 112, 906-916.	2.5	24
76	A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology, 2008, 45, 266-277.	0.9	417
77	Microsclerotia development in Verticillium dahliae: Regulation and differential expression of the hydrophobin gene VDH1. Fungal Genetics and Biology, 2008, 45, 1525-1532.	0.9	56
78	FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics, 2008, 24, 1024-1025.	1.8	162
79	<i>Phytophthora</i> Database: A Forensic Database Supporting the Identification and Monitoring of <i>Phytophthora</i> . Plant Disease, 2008, 92, 966-972.	0.7	64
80	Genome Organization and Evolution of the <i>AVR-Pita</i> Avirulence Gene Family in the <i>Magnaporthe grisea</i> Species Complex. Molecular Plant-Microbe Interactions, 2008, 21, 658-670.	1.4	127
81	CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Research, 2007, 36, D562-D571.	6.5	76
82	In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genetics and Biology, 2007, 44, 1011-1023.	0.9	81
83	Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genetics, 2007, 39, 561-565.	9.4	205
84	Genomeâ€wide analysis of Tâ€DNA integration into the chromosomes of <i>Magnaporthe oryzae</i> . Molecular Microbiology, 2007, 66, 371-382.	1.2	90
85	Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Molecular Microbiology, 2007, 66, 826-826.	1.2	4
86	Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum). , 2006, 344, 403-420.		55
87	Plant Pathogen Culture Collections: It Takes a Village to Preserve These Resources Vital to the Advancement of Agricultural Security and Plant Pathology. Phytopathology, 2006, 96, 920-925.	1.1	26
88	Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Current Genetics, 2005, 48, 109-116.	0.8	103
89	Rice Defense Mechanisms Against Cochliobolus miyabeanus and Magnaporthe grisea Are Distinct. Phytopathology, 2005, 95, 1248-1255.	1.1	63
90	A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 2005, 42, 483-492.	0.9	129

#	Article	IF	CITATIONS
91	FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium. European Journal of Plant Pathology, 2004, 110, 473-479.	0.8	860
92	Cloning and targeted disruption, via Agrobacterium tumefaciens -mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Current Genetics, 2004, 45, 104-110.	0.8	82
93	Molecular and Genetic Basis of Plant-Fungal Pathogen Interactions. Applied Mycology and Biotechnology, 2004, 4, 59-97.	0.3	1
94	In Vivo Microscopy of Vascular Wilt Disease in Arabidopsis thaliana. Microscopy and Microanalysis, 2004, 10, 216-217.	0.2	0
95	Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Current Genetics, 2003, 44, 49-57.	0.8	140
96	Evolution and Organization of a Highly Dynamic, Subtelomeric Helicase Gene Family in the Rice Blast Fungus <i>Magnaporthe grisea</i> . Genetics, 2002, 162, 103-112.	1.2	45
97	Organization and Distribution Pattern of MGLR-3, a Novel Retrotransposon in the Rice Blast Fungus Magnaporthe grisea. Fungal Genetics and Biology, 2001, 32, 11-19.	0.9	34
98	Gain of Virulence Caused by Insertion of a Pot3 Transposon in a Magnaporthe grisea Avirulence Gene. Molecular Plant-Microbe Interactions, 2001, 14, 671-674.	1.4	191
99	Identification of the First Fungal Annexin: Analysis of Annexin Gene Duplications and Implications for Eukaryotic Evolution. Journal of Molecular Evolution, 1998, 47, 531-543.	0.8	61
100	Expressed Sequences from Conidial, Mycelial, and Sexual Stages ofNeurospora crassa. Fungal Genetics and Biology, 1997, 21, 348-363.	0.9	151
101	Sequence of the met-10+ locus of Neurospora crassa: homology to a sequence of unknown function in Saccharomyces cerevisiae chromosome 8. Gene, 1995, 162, 111-115.	1.0	3
102	The <i>PWL</i> Host Specificity Gene Family in the Blast Fungus <i>Magnaporthe grisea</i> . Molecular Plant-Microbe Interactions, 1995, 8, 939.	1.4	266
103	Functional domains of the transcriptional activator NUC-1 in Neurospora crassa. Gene, 1993, 130, 259-264.	1.0	13