
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8278183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications. Journal of the American Society of Echocardiography, 2011, 24, 277-313.	2.8	1,026
2	Assessment of Myocardial Mechanics Using Speckle Tracking Echocardiography: Fundamentals and Clinical Applications. Journal of the American Society of Echocardiography, 2010, 23, 351-369.	2.8	906
3	Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal Cardiovascular Imaging, 2018, 19. 591-600.	1.2	891
4	Definitions for a Common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Journal of the American Society of Echocardiography, 2015, 28, 183-193.	2.8	855
5	Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal Cardiovascular Imaging, 2015, 16, 1-11.	1.2	830
6	Twist Mechanics of the Left Ventricle. JACC: Cardiovascular Imaging, 2008, 1, 366-376.	5.3	473
7	Left Ventricular Structure and Function. Journal of the American College of Cardiology, 2006, 48, 1988-2001.	2.8	416
8	Artificial Intelligence in Cardiovascular Imaging. Journal of the American College of Cardiology, 2019, 73, 1317-1335.	2.8	374
9	Tissue Tracking Technology for Assessing Cardiac Mechanics. JACC: Cardiovascular Imaging, 2015, 8, 1444-1460.	5.3	343
10	Two-Dimensional Strain–A Doppler-Independent Ultrasound Method for Quantitation of Regional Deformation: Validation In Vitro and In Vivo. Journal of the American Society of Echocardiography, 2005, 18, 1247-1253.	2.8	332
11	Machine learning in cardiovascular medicine: are we there yet?. Heart, 2018, 104, 1156-1164.	2.9	329
12	Mobile technology and the digitization of healthcare. European Heart Journal, 2016, 37, 1428-1438.	2.2	318
13	Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. Journal of the American College of Cardiology, 2016, 68, 2287-2295.	2.8	291
14	Left Ventricular Form and Function Revisited: Applied Translational Science to Cardiovascular Ultrasound Imaging. Journal of the American Society of Echocardiography, 2007, 20, 539-551.	2.8	261
15	Takotsubo Cardiomyopathy: A Unique Cardiomyopathy With Variable Ventricular Morphology. JACC: Cardiovascular Imaging, 2010, 3, 641-649.	5.3	215
16	Emerging Trends in CV Flow Visualization. JACC: Cardiovascular Imaging, 2012, 5, 305-316.	5.3	211
17	Standardized Imaging for Aortic Annular Sizing. JACC: Cardiovascular Imaging, 2013, 6, 249-262.	5.3	209
18	Apex-to-Base Dispersion in Regional Timing of Left Ventricular Shortening and Lengthening. Journal of the American College of Cardiology, 2006, 47, 163-172.	2.8	193

#	Article	IF	CITATIONS
19	Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain. Journal of the American College of Cardiology, 2015, 66, 1456-1466.	2.8	188
20	Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	164
21	High Prevalence of Pericardial Involvement in College Student Athletes Recovering From COVID-19. JACC: Cardiovascular Imaging, 2021, 14, 541-555.	5.3	160
22	Left Ventricular Isovolumic Flow Sequence During Sinus and Paced Rhythms. Journal of the American College of Cardiology, 2007, 49, 899-908.	2.8	158
23	Sphingosine-1-Phosphate Receptor Agonist Fingolimod Increases Myocardial Salvage and Decreases Adverse Postinfarction Left Ventricular Remodeling in a Porcine Model of Ischemia/Reperfusion. Circulation, 2016, 133, 954-966.	1.6	155
24	Pulmonary Hypertension in Valvular Disease. JACC: Cardiovascular Imaging, 2015, 8, 83-99.	5.3	131
25	Disparate Patterns of Left Ventricular Mechanics Differentiate Constrictive Pericarditis From Restrictive Cardiomyopathy. JACC: Cardiovascular Imaging, 2008, 1, 29-38.	5.3	128
26	Minimizing Cardiotoxicity While Optimizing Treatment Efficacy with Trastuzumab: Review and Expert Recommendations. Oncologist, 2009, 14, 1-11.	3.7	124
27	Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist. JACC: Cardiovascular Imaging, 2020, 13, 2017-2035.	5.3	123
28	U.S. Hospital Use of Echocardiography. Journal of the American College of Cardiology, 2016, 67, 502-511.	2.8	122
29	Handheld Echocardiography. Circulation, 2017, 136, 2178-2188.	1.6	109
30	Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. Journal of the American Heart Association, 2019, 8, e012788.	3.7	104
31	Global Left Atrial Strain Correlates with CHADS2 Risk Score in Patients with Atrial Fibrillation. Journal of the American Society of Echocardiography, 2011, 24, 506-512.	2.8	103
32	Twist and Untwist Mechanics of the Left Ventricle. Heart Failure Clinics, 2008, 4, 315-324.	2.1	101
33	Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. European Heart Journal Cardiovascular Imaging, 2013, 14, 1049-1060.	1.2	97
34	Biphasic tissue Doppler waveforms during isovolumic phases are associated with asynchronous deformation of subendocardial and subepicardial layers. Journal of Applied Physiology, 2005, 99, 1104-1111.	2.5	96
35	American Society of Echocardiography: Remote Echocardiography with Web-Based Assessments for Referrals at a Distance (ASE-REWARD) Study. Journal of the American Society of Echocardiography, 2013, 26, 221-233.	2.8	96
36	Left Ventricular Twist and Torsion. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	96

#	Article	IF	CITATIONS
37	Patent Foramen Ovale. Journal of the American College of Cardiology, 2012, 59, 1665-1671.	2.8	95
38	Characterization and clinical significance of right ventricular mechanics in pulmonary hypertension evaluated with cardiovascular magnetic resonance feature tracking. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 39.	3.3	94
39	Phenotypic Clustering of Left Ventricular Diastolic Function Parameters. JACC: Cardiovascular Imaging, 2019, 12, 1149-1161.	5.3	92
40	PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. , 2017, 22, 276-287.		91
41	Left atrial reservoir function predicts atrial fibrillation recurrence after catheter ablation: a two-dimensional speckle strain study. Journal of Interventional Cardiac Electrophysiology, 2011, 31, 197-206.	1.3	88
42	Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3453-3458.	7.1	87
43	Reclassifying Heart Failure: Predominantly Subendocardial, Subepicardial, and Transmural. Heart Failure Clinics, 2008, 4, 379-382.	2.1	85
44	High Spatial Resolution Speckle Tracking Improves Accuracy of 2-Dimensional Strain Measurements: An Update on a New Method in Functional Echocardiography. Journal of the American Society of Echocardiography, 2007, 20, 165-170.	2.8	84
45	Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1204-H1215.	3.2	82
46	Echocardiography and Three-Dimensional Printing: Sound IdeasÂto Touch a Heart. Journal of the American Society of Echocardiography, 2015, 28, 398-403.	2.8	82
47	Assessment of Transmitral Vortex Formation in Patients with Diastolic Dysfunction. Journal of the American Society of Echocardiography, 2012, 25, 220-227.	2.8	79
48	Regression of Paravalvular Aortic Regurgitation and Remodeling of Self-Expanding TranscatheterÂAortic Valve. JACC: Cardiovascular Imaging, 2015, 8, 1364-1375.	5.3	78
49	Precision Phenotyping in Heart Failure andÂPattern Clustering of Ultrasound DataÂfor the Assessment of DiastolicÂDysfunction. JACC: Cardiovascular Imaging, 2017, 10, 1291-1303.	5.3	78
50	Natural History of Left Ventricular Mechanics in Transplanted Hearts. JACC: Cardiovascular Imaging, 2010, 3, 989-1000.	5.3	75
51	Role of Echocardiography in the Diagnosis of Constrictive Pericarditis. Journal of the American Society of Echocardiography, 2009, 22, 24-33.	2.8	74
52	Comparison of echocardiographic features of noncompaction of the left ventricle in adults versus idiopathic dilated cardiomyopathy in adults. American Journal of Cardiology, 2004, 94, 389-391.	1.6	71
53	Three-Dimensional Principal Strain Analysis forÂCharacterizing Subclinical Changes in Left Ventricular Function. Journal of the American Society of Echocardiography, 2014, 27, 1041-1050.e1.	2.8	68
54	Assessment of Longitudinal Myocardial Mechanics in Patients with Degenerative Mitral Valve Regurgitation Predicts Postoperative Worsening of Left Ventricular Systolic Function. Journal of the American Society of Echocardiography, 2014, 27, 627-638.	2.8	67

#	Article	IF	CITATIONS
55	Network Tomography for UnderstandingÂPhenotypic Presentations in Aortic Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 236-248.	5.3	66
56	Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Research and Practice, 2019, 6, R41-R52.	2.5	64
57	Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. American Journal of Cardiology, 2004, 93, 886-890.	1.6	63
58	Constrictive Pericarditis. Circulation Journal, 2008, 72, 1555-1562.	1.6	62
59	Management of Asymptomatic Severe Aortic Stenosis. Journal of the American College of Cardiology, 2008, 52, 1279-1292.	2.8	61
60	Multimodality Imaging Strategies for the Assessment of Aortic Stenosis. Circulation: Cardiovascular Imaging, 2016, 9, e004352.	2.6	61
61	Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. JACC Basic To Translational Science, 2017, 2, 311-327.	4.1	61
62	Prediction of Abnormal Myocardial Relaxation From Signal Processed Surface ECG. Journal of the American College of Cardiology, 2018, 71, 1650-1660.	2.8	60
63	Machine Learning Assessment of Left Ventricular Diastolic Function Based on Electrocardiographic Features. Journal of the American College of Cardiology, 2020, 76, 930-941.	2.8	59
64	Advances in Echocardiographic Imaging in Heart Failure With Reduced and Preserved Ejection Fraction. Circulation Research, 2016, 119, 357-374.	4.5	58
65	Deep-Learning Models for the Echocardiographic Assessment of Diastolic Dysfunction. JACC: Cardiovascular Imaging, 2021, 14, 1887-1900.	5.3	57
66	High Prevalence of Abnormal Nocturnal Oximetry in Patients With Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2009, 54, 1805-1809.	2.8	56
67	Artificial Intelligence in Cardiovascular Medicine. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 25.	0.9	56
68	Multimodality Cardiovascular Imaging in the Midst of the COVID-19 Pandemic. JACC: Cardiovascular Imaging, 2020, 13, 1615-1626.	5.3	56
69	LV Mechanics in Mitral and Aortic Valve Diseases. JACC: Cardiovascular Imaging, 2014, 7, 1151-1166.	5.3	53
70	Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metabolism, 2019, 29, 78-90.e5.	16.2	53
71	Diagnostic Concordance of Echocardiography and Cardiac Magnetic Resonance–Based Tissue Tracking for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. Circulation: Cardiovascular Imaging, 2014, 7, 819-827.	2.6	52
72	A Randomized Trial of Pocket-Echocardiography Integrated Mobile Health Device Assessments in Modern Structural Heart Disease Clinics. JACC: Cardiovascular Imaging, 2018, 11, 546-557.	5.3	52

#	Article	IF	CITATIONS
73	Adenine Nucleotide Translocase 1 Deficiency Results in Dilated Cardiomyopathy With Defects in Myocardial Mechanics, Histopathological Alterations, and Activation of Apoptosis. JACC: Cardiovascular Imaging, 2011, 4, 1-10.	5.3	51
74	Robot-Assisted Remote Echocardiographic Examination andÂTeleconsultation. JACC: Cardiovascular Imaging, 2014, 7, 799-803.	5.3	50
75	Trastuzumab-Induced Cardiotoxicity: Heart Failure at the Crossroads. Mayo Clinic Proceedings, 2008, 83, 197-203.	3.0	48
76	Role of Left Ventricular Twist Mechanics in the Assessment of Cardiac Dyssynchrony in Heart Failure. JACC: Cardiovascular Imaging, 2009, 2, 1425-1435.	5.3	47
77	Effects of Percutaneous Balloon Mitral Valvuloplasty on Left Ventricular Deformation in Patients with Isolated Severe Mitral Stenosis: A Speckle-Tracking Strain Echocardiographic Study. Journal of the American Society of Echocardiography, 2014, 27, 639-647.	2.8	47
78	Myocardial Mechanics in Patients With Normal LVEF and Diastolic Dysfunction. JACC: Cardiovascular Imaging, 2020, 13, 258-271.	5.3	45
79	Self-Expanding Transcatheter Aortic Valve Replacement Versus Surgical Valve Replacement in Patients at High Risk for Surgery. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	44
80	How Do We Reconcile Echocardiography, Computed Tomography, and HybridÂlmaging in Assessing Discordant GradingÂof AorticÂStenosisÂSeverity?. JACC: Cardiovascular Imaging, 2019, 12, 267-282.	5.3	43
81	Effects of percutaneous mitral commissurotomy on longitudinal left ventricular dynamics in mitral stenosis: Quantitative assessment by tissue velocity imaging. Journal of the American Society of Echocardiography, 2004, 17, 824-828.	2.8	41
82	The Future of Cardiac Imaging. JACC: Cardiovascular Imaging, 2016, 9, 1211-1223.	5.3	41
83	RV Form and Function. JACC: Cardiovascular Imaging, 2013, 6, 636-639.	5.3	40
84	A Machine-Learning Framework to Identify Distinct Phenotypes of AorticÂStenosis Severity. JACC: Cardiovascular Imaging, 2021, 14, 1707-1720.	5.3	39
85	Core Competencies in EchocardiographyÂfor Imaging StructuralÂHeart Disease Interventions. JACC: Cardiovascular Imaging, 2019, 12, 2560-2570.	5.3	38
86	History of echocardiography and its future applications in medicine. Critical Care Medicine, 2007, 35, S309-S313.	0.9	37
87	Usefulness of Two-Dimensional and Speckle Tracking Echocardiography In "Gray Zone―Left Ventricular Hypertrophy to Differentiate Professional Football Player's Heart from Hypertrophic Cardiomyopathy. American Journal of Cardiology, 2011, 108, 1322-1326.	1.6	37
88	Impact of Acute Moderate Elevation in Left Ventricular Afterload on Diastolic Transmitral Flow Efficiency: Analysis by Vortex Formation Time. Journal of the American Society of Echocardiography, 2009, 22, 427-431.	2.8	36
89	Multiplanar Visualization of Blood Flow Using Echocardiographic Particle Imaging Velocimetry. JACC: Cardiovascular Imaging, 2012, 5, 566-569.	5.3	36
90	CRT Improves LV Filling Dynamics. JACC: Cardiovascular Imaging, 2013, 6, 704-713.	5.3	36

#	Article	IF	CITATIONS
91	Will Artificial Intelligence Replace the Human Echocardiographer?. Circulation, 2018, 138, 1639-1642.	1.6	35
92	Interpatient Similarities in Cardiac Function. JACC: Cardiovascular Imaging, 2020, 13, 1119-1132.	5.3	35
93	Comparison of Usefulness of Tissue Doppler Imaging Versus Brain Natriuretic Peptide for Differentiation of Constrictive Pericardial Disease from Restrictive Cardiomyopathy. American Journal of Cardiology, 2008, 102, 357-362.	1.6	34
94	Value of Interactive Scanning for Improving the Outcome of New-Learners in Transcontinental Tele-Echocardiography (VISION-in-Tele-Echo) Study. Journal of the American Society of Echocardiography, 2015, 28, 75-87.	2.8	34
95	Cardioprotective Effects of HSP72ÂAdministration on Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 2017, 70, 1479-1492.	2.8	34
96	A low-cost texture-based pipeline for predicting myocardial tissue remodeling and fibrosis using cardiac ultrasound. EBioMedicine, 2020, 54, 102726.	6.1	34
97	Robotic aortic valve replacement. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1753-1759.	0.8	34
98	Machine learning for nuclear cardiology: The way forward. Journal of Nuclear Cardiology, 2019, 26, 1755-1758.	2.1	33
99	Longitudinal and Circumferential Strain in Patients with Regional LV Dysfunction. Current Cardiology Reports, 2013, 15, 339.	2.9	32
100	Feature Tracking-Derived Peak Systolic Strain Compared to Late Gadolinium Enhancement in Troponin-Positive Myocarditis: A Case–Control Study. Pediatric Cardiology, 2016, 37, 696-703.	1.3	32
101	The Role of Artificial Intelligence in Echocardiography. Current Cardiology Reports, 2020, 22, 99.	2.9	32
102	Hypertrophic obstructive cardiomyopathy and sleep-disordered breathing: an unfavorable combination. Nature Clinical Practice Cardiovascular Medicine, 2009, 6, 14-15.	3.3	31
103	Myocardial Mechanics in Cardiomyopathies. Progress in Cardiovascular Diseases, 2014, 57, 111-124.	3.1	31
104	Doppler tissue imaging improves assessment of abnormal interventricular septal and posterior wall motion in constrictive pericarditis. Journal of the American Society of Echocardiography, 2005, 18, 226-230.	2.8	30
105	A pilot study to assess the use of protein a immunoadsorption for chronic dilated cardiomyopathy. Journal of Clinical Apheresis, 2007, 22, 210-214.	1.3	30
106	Functional Strain-Line Pattern in the Human Left Ventricle. Physical Review Letters, 2012, 109, 048103.	7.8	30
107	Relationship of contrast-enhanced magnetic resonance imaging-derived intramural scar distribution and speckle tracking echocardiography-derived left ventricular two-dimensional strains. European Heart Journal Cardiovascular Imaging, 2012, 13, 152-158.	1.2	30
108	Selective echocardiographic analysis of epicardial and endocardial left ventricular rotational mechanics in an animal model of pericardial adhesions. European Journal of Echocardiography, 2009, 10, 357-362.	2.3	29

#	Article	IF	CITATIONS
109	Feasibility of Intercity and Trans-Atlantic Telerobotic Remote Ultrasound. JACC: Cardiovascular Imaging, 2014, 7, 804-809.	5.3	29
110	The Role of Artificial Intelligence in Cardiovascular Imaging: State of the Art Review. Frontiers in Cardiovascular Medicine, 2020, 7, 618849.	2.4	29
111	Quantification of Regional Nonuniformity and Paradoxical Intramural Mechanics in Hypertrophic Cardiomyopathy by High Frame Rate Ultrasound Myocardial Strain Mapping. Journal of the American Society of Echocardiography, 2005, 18, 737-742.	2.8	28
112	Transthoracic Echocardiography Guidance forÂTAVR Under Monitored Anesthesia Care. JACC: Cardiovascular Imaging, 2015, 8, 379-380.	5.3	28
113	Artificial Intelligence-Based Assessment of Left Ventricular Filling Pressures From 2-Dimensional Cardiac Ultrasound Images. JACC: Cardiovascular Imaging, 2018, 11, 509-510.	5.3	28
114	Gestational changes in left ventricular myocardial contractile function: new insights from two-dimensional speckle tracking echocardiography. International Journal of Cardiovascular Imaging, 2017, 33, 69-82.	1.5	26
115	Molecular Imaging of Apoptosis in IschemiaÂReperfusion Injury With RadiolabeledÂDuramycin Targeting Phosphatidylethanolamine. JACC: Cardiovascular Imaging, 2018, 11, 1823-1833.	5.3	25
116	Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement. International Journal of Cardiovascular Imaging, 2013, 29, 797-808.	1.5	24
117	New Cardiac Imaging Algorithms to Diagnose Constrictive Pericarditis Versus Restrictive Cardiomyopathy. Current Cardiology Reports, 2017, 19, 43.	2.9	24
118	Machine learning for predicting cardiac events: what does the future hold?. Expert Review of Cardiovascular Therapy, 2020, 18, 77-84.	1.5	24
119	A Network-Based "Phenomics―Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data. JACC: Cardiovascular Imaging, 2020, 13, 1655-1670.	5.3	24
120	Cardiovascular Imaging and Diagnostic Procedures in Pregnancy. Cardiology Clinics, 2012, 30, 331-341.	2.2	23
121	Relationship of Transmural Variations in Myofiber Contractility to Left Ventricular Ejection Fraction: Implications for Modeling Heart Failure Phenotype With Preserved Ejection Fraction. Frontiers in Physiology, 2018, 9, 1003.	2.8	22
122	Percutaneous Closure of Peridevice Leak After Left Atrial Appendage Occlusion. JACC: Cardiovascular Interventions, 2018, 11, e83-e85.	2.9	22
123	Intelligent Platforms for Disease Assessment. JACC: Cardiovascular Imaging, 2013, 6, 1206-1211.	5.3	21
124	Machine Learning for Data-DrivenÂDiscovery. JACC: Cardiovascular Imaging, 2019, 12, 690-692.	5.3	21
125	Cardiac Imaging in the Post-ISCHEMIA Trial Era. JACC: Cardiovascular Imaging, 2020, 13, 1815-1833.	5.3	21
126	Left Ventricular Muscle and Fluid Mechanics in Acute Myocardial Infarction. American Journal of Cardiology, 2010, 106, 1404-1409.	1.6	20

Т

#	Article	IF	CITATIONS
127	Computational Modeling Studies of the Roles of Left Ventricular Geometry, Afterload, and Muscle Contractility on Myocardial Strains in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 2021, 14, 1131-1145.	2.4	20
128	A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients. Npj Digital Medicine, 2021, 4, 95.	10.9	20
129	The Dynamic Vortex of a Beating Heart. Journal of the American College of Cardiology, 2014, 64, 1722-1724.	2.8	19
130	Global Longitudinal Shortening. JACC: Cardiovascular Imaging, 2019, 12, 1566-1567.	5.3	19
131	Transoesophageal echocardiography. Heart, 2005, 91, 541-547.	2.9	18
132	Vortex imaging: new information gain from tracking cardiac energy loss. European Heart Journal Cardiovascular Imaging, 2015, 16, 719-720.	1.2	18
133	Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.6	18
134	Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA). Computers in Biology and Medicine, 2021, 139, 104983.	7.0	18
135	Exploring Left Ventricular Isovolumic Shortening and Stretch MechanicsâŽâŽEditorials published in JACC: Cardiovascular Imaging reflect the views of the authors and do not necessarily represent the views of JACC: Cardiovascular Imaging or the American College of Cardiology JACC: Cardiovascular Imaging, 2009, 2, 212-215.	5.3	17
136	Tissue Doppler Image-Derived Measurements During Isovolumic Contraction Predict Exercise Capacity in Patients With Reduced Left Ventricular Ejection Fraction. JACC: Cardiovascular Imaging, 2010, 3, 1-9.	5.3	17
137	Cardiac Strain as a Universal Biomarker. JACC: Cardiovascular Imaging, 2014, 7, 534-536.	5.3	17
138	The Potential of Clinical Phenotyping of HeartÂFailure With Imaging Biomarkers forÂGuidingÂTherapies. JACC: Cardiovascular Imaging, 2017, 10, 1056-1071.	5.3	17
139	Incidence, Characteristics and Management of Persistent Peri-Device Flow after Percutaneous Left Atrial Appendage Occlusion. Structural Heart, 2019, 3, 491-498.	0.6	17
140	Rapid Screening for Subclinical Atherosclerosis by Carotid Ultrasound Examination: The HAPPY (Heart) Tj ETQqO	0 0 rgBT /	Overlock 10 1
141	Machine Learning of ECG Waveforms toÂlmprove Selection for Testing forÂAsymptomatic Left VentricularÂDysfunction. JACC: Cardiovascular Imaging, 2021, 14, 1904-1915.	5.3	17
142	Myocardial deformation and rotational mechanics in revascularized single vessel disease patients 2 years after ST-elevation myocardial infarction. Journal of Cardiovascular Medicine, 2011, 12, 635-642.	1.5	16
143	$ ilde{A}$ € LA Mode Atrioventricular Mechanical Coupling. JACC: Cardiovascular Imaging, 2014, 7, 109-111.	5.3	15

A Summary of the American Society of Echocardiography Foundation Value-Based Healthcare: Summit 2014. Journal of the American Society of Echocardiography, 2015, 28, 755-769. 2.8 144 15

#	Article	IF	CITATIONS
145	The whole is greater than the sum of its parts: combining classical statistical and machine intelligence methods in medicine. Heart, 2018, 104, 1228-1228.	2.9	15
146	The Mechanics of Machine Learning: From a Concept to Value. Journal of the American Society of Echocardiography, 2018, 31, 1285-1287.	2.8	14
147	Clinical and Economic Burden of Acute Ischemic Stroke Following Transcatheter Aortic Valve Replacement. Structural Heart, 2019, 3, 72-73.	0.6	14
148	Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography. Current Cardiovascular Imaging Reports, 2020, 13, 1.	0.6	14
149	Artificial Intelligence in Cardiac Imaging. US Cardiology Review, 2020, 13, 110-116.	0.5	14
150	Detection of Subclinical Atherosclerosis in Peripheral Arterial Beds With B-Mode Ultrasound: A Proposal for Guiding the Decision for Medical Intervention and an Artifact-Corrected Volumetric Scoring Index. Global Heart, 2020, 9, 367.	2.3	13
151	Development and validation of optimal phenomapping methods to estimate long-term atherosclerotic cardiovascular disease risk in patients with type 2 diabetes. Diabetologia, 2021, 64, 1583-1594.	6.3	13
152	Cardiovascular Imaging Through the Prism of Modern Metrics. JACC: Cardiovascular Imaging, 2020, 13, 1256-1269.	5.3	13
153	LV Segmentation and Mechanics in HCM: Twisting the Rubik's Cube Into Perfection!. JACC: Cardiovascular Imaging, 2012, 5, 765-768.	5.3	12
154	Left Ventricular Rotational Mechanics before and after Exercise in Children. Journal of the American Society of Echocardiography, 2014, 27, 1336-1343.	2.8	12
155	Clinical Inference From Cardiovascular Imaging: Paradigm Shift Towards Machine-Based Intelligent Platform. Current Treatment Options in Cardiovascular Medicine, 2020, 22, 1.	0.9	12
156	Doppler Strain Imaging Closely Reflects Myocardial Energetic Status in Acute Progressive Ischemia and Indicates Energetic Recovery After Reperfusion. Journal of the American Society of Echocardiography, 2008, 21, 961-968.	2.8	11
157	CT assessment of the left atrial appendage post-transcatheter occlusion – A systematic review and meta analysis. Journal of Cardiovascular Computed Tomography, 2021, 15, 348-355.	1.3	11
158	Increase in the Late Diastolic Filling Force Is Associated With Impaired Transmitral Flow Efficiency in Acute Moderate Elevation of Left Ventricular Afterload. Journal of Ultrasound in Medicine, 2009, 28, 175-182.	1.7	10
159	Non-uniform recovery of left ventricular transmural mechanics in ST-segment elevation myocardial infarction. Cardiovascular Ultrasound, 2010, 8, 31.	1.6	10
160	Usefulness of Semisupervised Machine-Learning-Based Phenogrouping to Improve Risk Assessment for Patients Undergoing Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2020, 136, 122-130.	1.6	10
161	Parametric Detection and Measurement of Perfusion Defects in Attenuated Contrast Echocardiographic Images. Journal of Ultrasound in Medicine, 2007, 26, 739-748.	1.7	9
162	Left Ventricular Transmural Mechanics: Tracking Opportunities In-Depth. Journal of the American Society of Echocardiography, 2009, 22, 1022-1024.	2.8	9

#	Article	IF	CITATIONS
163	Reply. Journal of the American College of Cardiology, 2017, 69, 2101-2102.	2.8	9
164	Comparison of transesophageal and transthoracic echocardiography under moderate sedation for guiding transcatheter aortic valve replacement. Journal of Animal Science and Technology, 2018, 5, 79-87.	2.5	9
165	Cardiac mechanics in heart failure with preserved ejection fraction. Echocardiography, 2020, 37, 1936-1943.	0.9	9
166	Association Between Breast Arterial Calcification on Mammography and Coronary Artery Disease: A Systematic Review and Meta-Analysis. Journal of Women's Health, 2022, 31, 1719-1726.	3.3	9
167	Cardiovascular Imaging and Intervention Through the Lens of Artificial Intelligence. Interventional Cardiology Review, 2021, 16, e31.	1.6	9
168	Intraprocedural TAVR Annulus Sizing Using 3D TEE and the "Turnaround Rule― JACC: Cardiovascular Imaging, 2016, 9, 213-215.	5.3	8
169	Toward Precision in Balloon-ExpandableÂTAVR. JACC: Cardiovascular Interventions, 2017, 10, 821-823.	2.9	8
170	How to interpret an echocardiography report (for the non-imager)?. Heart, 2017, 103, 1733-1744.	2.9	8
171	3-Dimensional–Printed Models for TAVRÂPlanning. JACC: Cardiovascular Imaging, 2017, 10, 732-734.	5.3	8
172	Imaging Heart Failure With Artificial Intelligence. Circulation: Cardiovascular Imaging, 2018, 11, e007723.	2.6	8
173	The Many Dimensions of Diastolic Function. JACC: Cardiovascular Imaging, 2018, 11, 409-410.	5.3	8
174	Genetically determined pattern of left ventricular function in normal and hypertensive hearts. Journal of Clinical Hypertension, 2018, 20, 949-958.	2.0	8
175	Is TAVR Ready for the Global Aging Population?. Global Heart, 2017, 12, 291.	2.3	8
176	Cardiac Involvement in the COVID-19 Pandemic. JACC: Cardiovascular Imaging, 2020, 13, 2480-2483.	5.3	8
177	Effect of Head-Up Tilt-Table Testing on Left Ventricular Longitudinal Strain in Patients With Neurocardiogenic Syncope. American Journal of Cardiology, 2013, 112, 1252-1257.	1.6	7
178	Myocardial Stretch in Early Systole is a Key Determinant of the Synchrony of Left Ventricular Mechanical Activity in vivo. Circulation Journal, 2013, 77, 2526-2534.	1.6	7
179	Post-Extrasystolic Transaortic Valve Gradients Differentiate "Pseudo―and "True―Low-Flow, Low-Gradient Severe AS During Dobutamine Stress Echocardiography. JACC: Cardiovascular Imaging, 2017, 10, 1199-1200.	5.3	7
180	Management of Peridevice LeakÂFollowing Left Atrial AppendageÂOcclusion. JACC: Clinical Electrophysiology, 2018, 4, 967-969.	3.2	7

#	Article	IF	CITATIONS
181	Solving coronary risk: time to feed machines some calcium (score) supplements. European Heart Journal, 2019, 41, 368-370.	2.2	7
182	Classification of acute myocardial ischemia by artificial neural network using echocardiographic strain waveforms. Computers in Biology and Medicine, 2008, 38, 416-424.	7.0	6
183	Adding Dimensions to Unimodal Cardiac Images. JACC: Cardiovascular Imaging, 2011, 4, 816-818.	5.3	6
184	Echocardiographic Investigations of Myocardial Function in Mitral Stenosis: Making Sense of the Echolalia. Cardiology, 2011, 119, 142-144.	1.4	6
185	Usefulness of Speckle Tracking Strain Echocardiography for Assessment of Risk of Ventricular Arrhythmias After Placement of a Left Ventricular Assist Device. American Journal of Cardiology, 2017, 120, 1578-1583.	1.6	6
186	Annular rupture during transcatheter aortic valve replacement: novel treatment with amplatzer vascular plugs. European Heart Journal, 2018, 39, 714-715.	2.2	6
187	Transcatheter Closure of a SinusÂVenosusÂAtrial Septal Defect ViaÂTranshepatic Access. JACC: Cardiovascular Interventions, 2018, 11, e113-e115.	2.9	6
188	Comparing sedation vs. general anaesthesia in transoesophageal echocardiography-guided percutaneous transcatheter mitral valve repair: a meta-analysis. European Heart Journal Cardiovascular Imaging, 2020, 21, 511-521.	1.2	6
189	Does Implantation of Sonomicrometry Crystals Alter Regional Cardiac Muscle Function?. Journal of the American Society of Echocardiography, 2007, 20, 1407-1412.	2.8	5
190	Pacing polarity and left ventricular mechanical activation sequence in cardiac resynchronization therapy. Journal of Interventional Cardiac Electrophysiology, 2012, 35, 101-107.	1.3	5
191	Keeping Off the Wrong Track on the RightÂSide. JACC: Cardiovascular Imaging, 2015, 8, 232-234.	5.3	5
192	Molecular Imaging of Apoptosis inÂCancerÂTherapy-Related Cardiac Dysfunction Before LVEF Reduction. JACC: Cardiovascular Imaging, 2018, 11, 1203-1205.	5.3	5
193	HIV related stigma, perceived social support and risk of premature atherosclerosis in South Asians. Indian Heart Journal, 2018, 70, 630-636.	0.5	5
194	Prediction of coronary artery calcium scoring from surface electrocardiogram in atherosclerotic cardiovascular disease: a pilot study. European Heart Journal Digital Health, 2020, 1, 51-61.	1.7	5
195	Machine Learning in Cardiovascular Imaging. Heart Failure Clinics, 2022, 18, 245-258.	2.1	5
196	Role of Biplane Echocardiography in a Large-volume Clinical Practice: Revamping Strategies for Echocardiography in a Limited Time. Journal of the American Society of Echocardiography, 2005, 18, 757-760.	2.8	4
197	IMAGING BASED BIG DATA AND MACHINE LEARNING FRAMEWORK FOR RAPID PHENOTYPING OF LEFT VENTRICULAR DIASTOLIC FUNCTION. Journal of the American College of Cardiology, 2016, 67, 1614.	2.8	4
198	Beamforming algorithms for endocardial border detection. Echocardiography, 2018, 35, 1499-1506.	0.9	4

#	Article	IF	CITATIONS
199	Ticagrelor after pharmacological thrombolysis in patients with ST-segment elevation myocardial infarctions: insight from a trial sequential analysis. Journal of Thrombosis and Thrombolysis, 2019, 48, 661-667.	2.1	4
200	Imaging Is the Cornerstone of the Management of AorticÂValve Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 220-223.	5.3	4
201	Building Trust in Al. JACC: Cardiovascular Imaging, 2021, 14, 520-522.	5.3	4
202	Imaging With Deep Learning. JACC: Cardiovascular Imaging, 2022, 15, 547-549.	5.3	4
203	Parametric harmonic-to-fundamental ratio contrast echocardiography: A novel approach to identification and accurate measurement of left ventricular area under variable levels of ultrasound signal attenuation. Ultrasonics, 2007, 46, 109-118.	3.9	3
204	Bibliographic Metrics at JACC: Cardiovascular Imaging. JACC: Cardiovascular Imaging, 2011, 4, 1050-1051.	5.3	3
205	TAVR-Related Complications. JACC: Cardiovascular Imaging, 2017, 10, 100-103.	5.3	3
206	Risk-Stratifying COVID-19 Patients the Right Way. JACC: Cardiovascular Imaging, 2020, 13, 2300-2303.	5.3	3
207	Al-Powered Navigation System for Steering POCUS in the COVID-ICU. JACC: Case Reports, 2021, 3, 264-266.	0.6	3
208	Index Admission and Thirty-Day Readmission Outcomes of Patients With Cancer Presenting With STEMI. Cardiovascular Revascularization Medicine, 2022, 35, 121-128.	0.8	3
209	The Dynamics of Mitral Valve Function: Lessons to Be Learned From Three-Dimensional Echocardiography. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 8-10.	1.3	2
210	Dynamic Changes in LV Radius as a Marker of Septal Configuration for Predicting RV Failure Following LVAD Implantation. JACC: Cardiovascular Imaging, 2017, 10, 598-599.	5.3	2
211	The New Wave of Cardiovascular Biomechanics. JACC: Cardiovascular Imaging, 2019, 12, 1297-1299.	5.3	2
212	Non-invasive prediction of tissue Doppler-derived E/e′ ratio using lung Doppler signals. European Heart Journal Cardiovascular Imaging, 2020, 21, 994-1004.	1.2	2
213	Al tracks a beating heart's function over time. Nature, 2020, 580, 192-194.	27.8	2
214	3D Transesophageal Echocardiography for Guiding Transcatheter Aortic Valve Replacement Without Prior Cardiac Computed Tomography in Patients With Renal Dysfunction. Cardiovascular Revascularization Medicine, 2022, 41, 63-68.	0.8	2
215	Regional dyssynergy of the interventricular septum after septal artery occlusion in hypertrophic obstructive cardiomyopathy: use of quantitative Doppler tissue and strain rate imaging. Journal of the American Society of Echocardiography, 2004, 17, 384-386.	2.8	1
216	A Rising Paradigm of Appropriateness. Journal of the American Society of Echocardiography, 2010, 23, 1205-1206.	2.8	1

#	Article	IF	CITATIONS
217	Intramyocardial Hemorrhage after Percutaneous Coronary Intervention. Echocardiography, 2012, 29, E50-1.	0.9	1
218	Setting global standards in adult echocardiography: Where are we?. Indian Heart Journal, 2015, 67, 298-301.	0.5	1
219	Learning to think like Machines. Indian Heart Journal, 2018, 70, 469-470.	0.5	1
220	Embolic Protection Devices in Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2018, 11, 1274-1276.	2.9	1
221	TOPOLOGICAL DATA ANALYSIS FOR QUANTIFYING INTER-PATIENT SIMILARITIES IN CARDIAC FUNCTION. Journal of the American College of Cardiology, 2019, 73, 751.	2.8	1
222	Double-Orifice Mitral Valve Associated with Bicuspid Aortic Valve and Primary Pulmonary Vein Stenosis. Case, 2020, 4, 152-154.	0.3	1
223	ECG for Screening Cardiac Abnormalities: The Premise and Promise of Machine Learning. Circulation: Cardiovascular Imaging, 2021, 14, e012837.	2.6	1
224	Predicting Preclinical HeartÂFailureÂProgression. JACC: Cardiovascular Imaging, 2022, 15, 209-211.	5.3	1
225	Is left ventricular hypertrabeculation/noncompaction dependent on ventricular shape and function? Reply. American Journal of Cardiology, 2005, 95, 922-923.	1.6	0
226	Letter by Sengupta et al Regarding Article, "Mechanisms of Preejection and Postejection Velocity Spikes in Left Ventricular Myocardium: Interaction Between Wall Deformation and Valve Events― Circulation, 2009, 119, e204; author reply e205.	1.6	0
227	Cardiac Resynchronization: The Flow of Activation Sequence. JACC: Cardiovascular Imaging, 2013, 6, 924-926.	5.3	0
228	Valve-Sparing Aortic Root Replacement for RapidlyÂGrowing Multiple Sinus of Valsalva Pseudoaneurysms in a Case of Behçet's-Like Aortitis. Annals of Thoracic Surgery, 2013, 96, e23.	1.3	0
229	Authors' Reply. Journal of the American Society of Echocardiography, 2015, 28, 375-376.	2.8	0
230	The Symphony, the Ensemble, andÂtheÂInterventional Imager…. JACC: Cardiovascular Imaging, 2015, 8, 384-387.	5.3	0
231	Reply. JACC: Cardiovascular Imaging, 2015, 8, 383.	5.3	0
232	Speckle Tracking Echocardiographic Imaging in Metabolic Cardiomyopathies. Current Cardiovascular Imaging Reports, 2016, 9, 1.	0.6	0
233	FV-HSP70 PROTECTS MYOCARDIUM FROM ISCHEMIC/REPERFUSION INJURY. Journal of the American College of Cardiology, 2017, 69, 38.	2.8	0
234	CONCORDANCE OF CONVENTIONAL 2D-DOPPLER VERSUS SPECKLE TRACKING ECHOCARDIOGRAPHY-BASED CLASSIFICATION OF LEFT VENTRICULAR DIASTOLIC FUNCTION. Journal of the American College of Cardiology, 2017, 69, 1549.	2.8	0

0

#	Article	IF	CITATIONS
235	Physical Function and Well-Being in HFpEF. JACC: Cardiovascular Imaging, 2018, 11, 1934-1936.	5.3	0
236	Challenging Scenario of AorticÂValveÂTendon Masquerading asÂAorticÂDissection During TranscatheterÂAortic Valve Replacement. JACC: Case Reports, 2019, 1, 59-61.	0.6	0
237	MACHINE LEARNING PREDICTED FILLING PRESSURES FROM LUNG DOPPLER SIGNALS (LDS) PROVIDE A NOVEL METHOD TO MONITOR PULMONARY CONGESTION IN CONGESTIVE HEART FAILURE PATIENTS. Journal of the American College of Cardiology, 2019, 73, 715.	2.8	0
238	ULTRASOUND TISSUE TEXTURE-BASED ANALYSIS OF MYOCARDIAL FIBROSIS: RADIOMICS AND MACHINE LEARNING APPROACH. Journal of the American College of Cardiology, 2020, 75, 3564.	2.8	0
239	CORONARY COMPUTED TOMOGRAPHY ANGIOGRAPHY VERSUS STRESS ECHOCARDIOGRAPHY FOR ACUTE CHEST PAIN: A BAYESIAN META-ANALYSIS OF RANDOMIZED TRIALS. Journal of the American College of Cardiology, 2020, 75, 1742.	2.8	0
240	The Author Reply:. JACC: Cardiovascular Imaging, 2020, 13, 337-338.	5.3	0
241	UNIQUE ENERGY LOSS PATTERNS AND CORRELATION WITH VORTEX FORMATION FROM INFANCY THROUGH YOUNG ADULTHOOD. Journal of the American College of Cardiology, 2020, 75, 1740.	2.8	0
242	BREAST ARTERIAL CALCIFICATION IN MAMMOGRAM A NOVEL PREDICTOR OF CARDIOVASCULAR RISK IN WOMEN. Journal of the American College of Cardiology, 2020, 75, 1850.	2.8	0
243	Enforcing Quality in Strain Imaging Through Al-Powered Surveillance. JACC: Cardiovascular Imaging, 2021, 14, 346-349.	5.3	0
244	Transesophageal echocardiography probe cover: implementation of a cross-contamination containment strategy during the COVID-19 pandemic. Brazilian Journal of Anesthesiology (Elsevier), 2021, 71, 200-201.	0.4	0
245	Early Tracking of Radiation-Induced Cardiotoxicity. JACC: CardioOncology, 2021, 3, 290-293.	4.0	0
246	Future applications of strain imaging. , 2022, , 220-235.		0
247	Echocardiography in Heart Failure. , 2009, , 435-445.		0

Transesophageal Echocardiography: Principles and Application. , 2009, , 101-114.