Enrico Rampazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8277863/publications.pdf

Version: 2024-02-01

		147726	155592
84	3,194	31	55
papers	citations	h-index	g-index
91	91	91	3703
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angewandte Chemie - International Edition, 2011, 50, 4056-4066.	7.2	241
2	Ru(bpy) ₃ Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification. Journal of the American Chemical Society, 2009, 131, 2260-2267.	6.6	155
3	Iridium Doped Silicaâ ⁻ PEG Nanoparticles: Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media. Journal of the American Chemical Society, 2009, 131, 14208-14209.	6.6	130
4	Self-Assembled Fluorescent Chemosensors. Chemistry - A European Journal, 2006, 12, 1844-1854.	1.7	128
5	A fluorescence nanosensor for Cu2+ on silica particlesElectronic supplementary information (ESI) available: experimental procedure; TEM images; NMR, UV-vis and fluorescence spectra; fluoresence titration. See http://www.rsc.org/suppdata/cc/b3/b310582b/. Chemical Communications, 2003, , 3026.	2.2	113
6	Surface modification of silica nanoparticles: a new strategy for the realization of self-organized fluorescence chemosensors. Journal of Materials Chemistry, 2005, 15, 2687.	6.7	113
7	Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coordination Chemistry Reviews, 2018, 367, 65-81.	9.5	110
8	Self-Organizing Coreâ^'Shell Nanostructures:  Spontaneous Accumulation of Dye in the Core of Doped Silica Nanoparticles. Journal of the American Chemical Society, 2007, 129, 14251-14256.	6.6	106
9	Silica Nanoparticles for Fluorescence Sensing of ZnII: Exploring the Covalent Strategy. Chemistry - A European Journal, 2007, 13, 2238-2245.	1.7	101
10	Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy) ₃ ²⁺ Core–Shell Silica Nanoparticles. Journal of the American Chemical Society, 2016, 138, 15935-15942.	6.6	98
11	Energy Transfer from Silica Coreâ 'Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores. Journal of Physical Chemistry B, 2010, 114, 14605-14613.	1.2	82
12	Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coordination Chemistry Reviews, 2012, 256, 1664-1681.	9.5	82
13	Prevention of Selfâ€Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angewandte Chemie - International Edition, 2013, 52, 5965-5968.	7.2	80
14	Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale, 2014, 6, 3022-3036.	2.8	80
15	Dyeâ€Doped Silica Nanoparticles for Enhanced ECLâ€Based Immunoassay Analytical Performance. Angewandte Chemie - International Edition, 2020, 59, 21858-21863.	7.2	78
16	Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 2006, 22, 5877-5881.	1.6	72
17	Turning Fluorescent Dyes into Cu(II) Nanosensors. Langmuir, 2005, 21, 9314-9321.	1.6	58
18	Amplified Fluorescence Response of Chemosensors Grafted onto Silica Nanoparticles. Langmuir, 2008, 24, 8387-8392.	1.6	58

#	Article	IF	Citations
19	Surface Chemistry Architecture of Silica Nanoparticles Determine the Efficiency ofin VivoFluorescence Lymph Node Mapping. ACS Nano, 2013, 7, 8645-8657.	7.3	58
20	Multicolor core/shell silicananoparticles for in vivo and ex vivo imaging. Nanoscale, 2012, 4, 824-830.	2.8	55
21	A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles. Chemical Communications, 2012, 48, 4187.	2.2	54
22	Static quenching upon adduct formation: a treatment without shortcuts and approximations. Chemical Society Reviews, 2021, 50, 8414-8427.	18.7	54
23	Luminescent Chemosensors Based on Silica Nanoparticles. Topics in Current Chemistry, 2010, 300, 93-138.	4.0	50
24	Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale, 2013, 5, 7897.	2.8	47
25	An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer. Faraday Discussions, 2015, 185, 299-309.	1.6	45
26	Applications of nanoparticles in cancer medicine and beyond: optical and multimodalin vivoimaging, tissue targeting and drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1837-1849.	2.4	44
27	A Versatile Strategy for Signal Amplification Based on Core/Shell Silica Nanoparticles. Chemistry - A European Journal, 2011, 17, 13429-13432.	1.7	42
28	Luminescent chemosensors based on silicananoparticles for the detection of ionic species. New Journal of Chemistry, 2013, 37, 28-34.	1.4	41
29	Numerical Simulation of Doped Silica Nanoparticle Electrochemiluminescence. Journal of Physical Chemistry C, 2015, 119, 26111-26118.	1.5	39
30	Pluronic-Silica (PluS) Nanoparticles Doped with Multiple Dyes Featuring Complete Energy Transfer. Journal of Physical Chemistry C, 2014, 118, 9261-9267.	1.5	37
31	NIR-fluorescent dye doped silica nanoparticles for <i>in vivo</i> in maging, sensing and theranostic. Methods and Applications in Fluorescence, 2018, 6, 022002.	1.1	36
32	Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. Journal of Autoimmunity, 2019, 103, 102288.	3.0	33
33	Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. International Journal of Nanomedicine, 2012, 7, 4797.	3.3	31
34	Understanding the photophysical properties of coumarin-based Pluronic–silica (PluS) nanoparticles by means of time-resolved emission spectroscopy and accurate TDDFT/stochastic calculations. Physical Chemistry Chemical Physics, 2013, 15, 12360.	1.3	31
35	Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and Pl3K/Akt/ mTOR signaling. Oncotarget, 2016, 7, 5521-5537.	0.8	30
36	Template assisted self-organized chemosensors. Inorganica Chimica Acta, 2007, 360, 721-727.	1.2	28

#	Article	IF	CITATIONS
37	Reversible photoswitching of dye-doped core–shell nanoparticles. Chemical Communications, 2011, 47, 10975.	2.2	28
38	Polymer Blending through Host–Guest Interactions. Macromolecules, 2014, 47, 632-638.	2.2	28
39	A fluorescent ratiometric nanosized system for the determination of Pdll in water. Chemical Communications, 2014, 50, 15259-15262.	2.2	27
40	PluS Nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for $Ag(I)$ and $Hg(II)$ in water. Sensors and Actuators B: Chemical, 2015, 207, 1035-1044.	4.0	27
41	Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. International Journal of Nanomedicine, 2015, 10, 4099.	3.3	26
42	Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. International Journal of Nanomedicine, 2016, Volume 11, 4865-4874.	3.3	23
43	Synthesis and Electrochemiluminescence of a Ru(bpy) ₃ -Labeled Coupling Adduct Produced on a Self-Assembled Monolayer. Journal of Physical Chemistry C, 2008, 112, 2949-2957.	1.5	22
44	Facile tuning from blue to white emission in silica nanoparticles doped with oligothiophene fluorophores. Journal of Materials Chemistry, 2010, 20, 9903.	6.7	21
45	Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. RSC Advances, 2014, 4, 18278-18285.	1.7	18
46	Monofunctional Stealth Nanoparticle for Unbiased Single Molecule Tracking Inside Living Cells. Nano Letters, 2014, 14, 2189-2195.	4.5	18
47	Neutral Dye-Doped Silica Nanoparticles for Electrogenerated Chemiluminescence Signal Amplification. Journal of Physical Chemistry C, 2019, 123, 5686-5691.	1.5	18
48	Nanotechnology-Based Cisplatin Intracellular Delivery to Enhance Chemo-Sensitivity of Ovarian Cancer. International Journal of Nanomedicine, 2020, Volume 15, 4793-4810.	3.3	18
49	Bright Phosphorescence of All-Organic Chromophores Confined within Water-Soluble Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 29884-29890.	1.5	16
50	Electrostatically driven interaction of silica-supported lipid bilayer nanoplatforms and a nerve growth factor-mimicking peptide. Soft Matter, 2013, 9, 4648.	1.2	15
51	Dyeâ€Doped Silica Nanoparticles for Enhanced ECLâ€Based Immunoassay Analytical Performance. Angewandte Chemie, 2020, 132, 22042-22047.	1.6	15
52	Iridium(III)â€Doped Coreâ€Shell Silica Nanoparticles: Nearâ€IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1690-1696.	1.7	14
53	Effect of Surface Chemistry on Incorporation of Nanoparticles within Calcite Single Crystals. Crystal Growth and Design, 2019, 19, 4429-4435.	1.4	14
54	Photoluminescenceâ€Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, 17529-17541.	1.7	14

#	Article	IF	Citations
55	Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer. Frontiers in Chemistry, 2020, 8, 71.	1.8	13
56	Two Dimensional-Difference in Gel Electrophoresis (2D-DIGE) Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Serum. Cancers, 2021, 13, 3639.	1.7	13
57	Engineered Nanostructured Materials for Ofloxacin Delivery. Frontiers in Chemistry, 2018, 6, 554.	1.8	12
58	Small extracellular vesicles from malignant ascites of patients with advanced ovarian cancer provide insights into the dynamics of the extracellular matrix. Molecular Oncology, 2021, 15, 3596-3614.	2.1	12
59	Guest-controlled aggregation of cavitand gold nanoparticles and N-methyl pyridinium-terminated PEG. Chemical Communications, 2011, 47, 6596.	2,2	10
60	Dualâ€Mode, Anisotropyâ€Encoded, Ratiometric Fluorescent Nanosensors: Towards Multiplexed Detection. Chemistry - A European Journal, 2018, 24, 16743-16746.	1.7	8
61	A Selective Ratiometric Fluorescent Probe for No-Wash Detection of PVC Microplastic. Polymers, 2021, 13, 1588.	2.0	8
62	Energy Transfer in Silica Nanoparticles: An Essential Tool for the Amplification of the Fluorescence Signal. Reviews in Fluorescence, 2010, , 119-137.	0.5	7
63	Mapping heterogeneous polarity in multicompartment nanoparticles. Scientific Reports, 2018, 8, 17095.	1.6	7
64	Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochemical and Photobiological Sciences, 2019, 18, 2142-2149.	1.6	7
65	Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix. ACS Applied Materials & Samp; Interfaces, 2022, 14, 34502-34512.	4.0	7
66	pH-responsive host–guest polymerization and blending. RSC Advances, 2015, 5, 11334-11342.	1.7	6
67	Electrochemically Driven Luminescence in Organometallic and Inorganic Systems. , 2017, , 293-326.		6
68	Fluorogenic hyaluronan nanogels for detection of micro- and nanoplastics in water. Environmental Science: Nano, 2022, 9, 582-588.	2.2	6
69	Collective Properties Extend Resistance to Photobleaching of Highly Doped PluS NPs. European Journal of Inorganic Chemistry, 2017, 2017, 5094-5097.	1.0	5
70	PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS Omega, 2019, 4, 13962-13971.	1.6	5
71	Specific, Surface-Driven, and High-Affinity Interactions of Fluorescent Hyaluronan with PEGylated Nanomaterials. ACS Applied Materials & Interfaces, 2020, 12, 6806-6813.	4.0	5
72	Integrin-Targeting Dye-Doped PEG-Shell/Silica-Core Nanoparticles Mimicking the Proapoptotic Smac/DIABLO Protein. Nanomaterials, 2020, 10, 1211.	1.9	4

#	Article	IF	CITATIONS
73	Interplay Between Cyclization and Polymerization in Ditopic Cavitand Monomers. Australian Journal of Chemistry, 2010, 63, 646.	0.5	3
74	3 Synthesis of Upconverting Nanomaterials: Designing the Composition and Nanostructure. Nanomaterials and Their Applications, 2016, , 37-68.	0.0	3
75	Gold nanoparticles stabilized using a fluorescent propargylic ester terminal alkyne at room temperature. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
76	Luminescent Chemosensors: From Molecules to Nanostructures. Lecture Notes in Quantum Chemistry II, 2016, , 479-497.	0.3	2
77	Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging. Topics in Current Chemistry, 2016, 370, 1-28.	4.0	2
78	Preparation of Non-Toxic Fluorescent Peptide-Coated Silica/PEG Nanoparticles from Peptide-Block Copolymer Conjugates. Micro, 2022, 2, 240-256.	0.9	2
79	Fluorescent silica nanoparticles., 2006,,.		1
80	Coreâ€"Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. Langmuir, 2021, 37, 4802-4809.	1.6	1
81	Iridium (III)-Doped Core-Shell Silica Nanoparticles: Near-IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1570-1570.	1.7	O
82	Frontispiece: Dyeâ€Doped Silica Nanoparticles for Enhanced ECLâ€Based Immunoassay Analytical Performance. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
83	Frontispiz: Dyeâ€Doped Silica Nanoparticles for Enhanced ECLâ€Based Immunoassay Analytical Performance. Angewandte Chemie, 2020, 132, .	1.6	0
84	Frontispiece: Photoluminescenceâ€Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, .	1.7	0