Andrew G Horti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8277685/publications.pdf

Version: 2024-02-01

87 papers 3,394 citations

34 h-index 55 g-index

89 all docs 89 docs citations

89 times ranked

2724 citing authors

#	Article	IF	CITATIONS
1	PET/CT imaging of CSF1R in a mouse model of tuberculosis. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4088-4096.	6.4	1
2	18F-labeled radiotracers for inÂvivo imaging of DREADD with positron emission tomography. European Journal of Medicinal Chemistry, 2021, 213, 113047.	5.5	7
3	First-in-human neuroimaging of soluble epoxide hydrolase using [18F]FNDP PET. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3122-3128.	6.4	6
4	High Availability of the α7-Nicotinic Acetylcholine Receptor in Brains of Individuals with Mild Cognitive Impairment: A Pilot Study Using ¹⁸ F-ASEM PET. Journal of Nuclear Medicine, 2020, 61, 423-426.	5.0	22
5	In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [1251]lodo-ASEM and [18F]ASEM as Radiotracers of Homo- and Heteromeric $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors. Molecules, 2020, 25, 1425.	3.8	8
6	PET imaging of soluble epoxide hydrolase in non-human primate brain with [18F]FNDP. EJNMMI Research, 2020, 10, 67.	2.5	10
7	Radiosynthesis and validation of [5â€cyanoâ€ <i>N</i> à€(4â€(4â€(4â€(¹¹ C]methylpiperazinâ€1â€yl)â€2â€(piperidinâ€1â€yl)phenyl) fura ([¹¹ C]CPPC), a PET radiotracer for imaging CSF1R, a microgliaâ€specific marker. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62. 903-908.	anâ€2â€ca 1.0	irboxamid <mark>e]</mark>
8	High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nature Communications, 2019, 10, 4627.	12.8	128
9	14.3 OPPORTUNITIES IN PRECISION PSYCHIATRY USING PET-BASED NEUROIMAGING. Schizophrenia Bulletin, 2019, 45, S111-S112.	4.3	O
10	23.4 PET-BASED PRECISION NEUROIMAGING OF THE ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR IN PATIENTS WITH RECENT ONSET OF PSYCHOSIS. Schizophrenia Bulletin, 2019, 45, S127-S127.	4.3	0
11	Opportunities in precision psychiatry using PET neuroimaging in psychosis. Neurobiology of Disease, 2019, 131, 104428.	4.4	8
12	Use of $\langle \sup 18 \rangle 18 \langle \sup F$ -ASEM PET to Determine the Availability of the $\hat{l}\pm 7$ -Nicotinic Acetylcholine Receptor in Recent-Onset Psychosis. Journal of Nuclear Medicine, 2019, 60, 241-243.	5.0	19
13	PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1686-1691.	7.1	140
14	Synthesis and Evaluation of a New 18F-Labeled Radiotracer for Studying the GABAB Receptor in the Mouse Brain. ACS Chemical Neuroscience, 2018, 9, 1453-1461.	3.5	7
15	$<$ sup> $18sup>F-XTRA PET for Enhanced Imaging of the Extrathalamic \hat{l}\pm4\hat{l}^22 Nicotinic Acetylcholine Receptor. Journal of Nuclear Medicine, 2018, 59, 1603-1608.$	5.0	15
16	An optimized radiosynthesis of [¹⁸ F]FNDP, a positron emission tomography radiotracer for imaging soluble epoxide hydrolase (sEH). Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 567-572.	1.0	8
17	Feasibility Evaluation of Myocardial Cannabinoid Type 1 Receptor ImagingÂinÂObesity. JACC: Cardiovascular Imaging, 2018, 11, 320-332.	5.3	24
18	Brain PET Imaging of α7-nAChR with [18F]ASEM: Reproducibility, Occupancy, Receptor Density, and Changes in Schizophrenia. International Journal of Neuropsychopharmacology, 2018, 21, 656-667.	2.1	47

#	Article	IF	Citations
19	The distribution of the alpha7 nicotinic acetylcholine receptor in healthy aging: An in vivo positron emission tomography study with [18F]ASEM. Neurolmage, 2018, 165, 118-124.	4.2	27
20	Development of a radioligand for imaging V 1a vasopressin receptors with PET. European Journal of Medicinal Chemistry, 2017, 139, 644-656.	5.5	8
21	Imaging $\hat{l}\pm4\hat{l}^22$ Nicotinic Acetylcholine Receptors (nAChRs) in Baboons with [18F]XTRA, a Radioligand with Improved Specific Binding in Extra-Thalamic Regions. Molecular Imaging and Biology, 2017, 19, 280-288.	2.6	11
22	Synthesis and Preliminary Biological Evaluation of Indol-3-yl-oxoacetamides as Potent Cannabinoid Receptor Type 2 Ligands. Molecules, 2017, 22, 77.	3.8	3
23	18F-FNDP for PET Imaging of Soluble Epoxide Hydrolase. Journal of Nuclear Medicine, 2016, 57, 1817-1822.	5.0	19
24	Development of a High-Affinity PET Radioligand for Imaging Cannabinoid Subtype 2 Receptor. Journal of Medicinal Chemistry, 2016, 59, 7840-7855.	6.4	47
25	Development of Radiolabeled Ligands Targeting the Glutamate Binding Site of the <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor as Potential Imaging Agents for Brain. Journal of Medicinal Chemistry, 2016, 59, 11110-11119.	6.4	16
26	Microwave-assisted radiosynthesis of [¹⁸ F]ASEM, a radiolabeled <i>î±</i> 7-nicotinic acetylcholine receptor antagonist. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 180-182.	1.0	10
27	Cannabinoid CB2 Receptors in a Mouse Model of $\hat{Al^2}$ Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS ONE, 2015, 10, e0129618.	2.5	83
28	Quantitative Multi-modal Brain Autoradiography of Glutamatergic, Dopaminergic, Cannabinoid, and Nicotinic Receptors in Mutant Disrupted-In-Schizophrenia-1 (DISC1) Mice. Molecular Imaging and Biology, 2015, 17, 355-363.	2.6	13
29	[125I]lodo-ASEM, a specific in vivo radioligand for $\hat{\text{I}}\pm7$ -nAChR. Nuclear Medicine and Biology, $2015,42,488-493$.	0.6	8
30	Development of [$18F$]ASEM, a specific radiotracer for quantification of the $\hat{1}\pm7$ -nAChR with positron-emission tomography. Biochemical Pharmacology, 2015, 97, 566-575.	4.4	31
31	AT-1001 Is a Partial Agonist with High Affinity and Selectivity at Human and Rat <i>α</i> 3 <i>β</i> 4 Nicotinic Cholinergic Receptors. Molecular Pharmacology, 2015, 88, 640-649.	2.3	9
32	Brain PET Imaging in the Cannabinoid System. , 2014, , 27-36.		2
33	Human Brain Imaging of $\hat{l}\pm7$ nAChR with [18F]ASEM: a New PET Radiotracer for Neuropsychiatry and Determination of Drug Occupancy. Molecular Imaging and Biology, 2014, 16, 730-738.	2.6	69
34	$^{\circ}$	5.0	65
35	Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia. Schizophrenia Research, 2014, 159, 124-129.	2.0	52
36	PET Imaging of Endocannabinoid System. , 2014, , 249-319.		6

#	Article	IF	Citations
37	Synthesis and evaluation of new radioligands [11C]A-833834 and [11C]A-752274 for positron-emission tomography of α7-nicotinic acetylcholine receptors. Nuclear Medicine and Biology, 2013, 40, 395-402.	0.6	19
38	Derivatives of Dibenzothiophene for Positron Emission Tomography Imaging of α7-Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2013, 56, 7574-7589.	6.4	57
39	PET Imaging of High-Affinity $\hat{l}\pm4\hat{l}^22$ Nicotinic Acetylcholine Receptors in Humans with $\langle \sup 18 \langle \sup F-AZAN \rangle$, a Radioligand with Optimal Brain Kinetics. Journal of Nuclear Medicine, 2013, 54, 1308-1314.	5.0	46
40	Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 159-166.	1.0	24
41	PET Imaging of Nicotinic Acetylcholine Receptors in Baboons with ¹⁸ F-AZAN, a Radioligand with Improved Brain Kinetics. Journal of Nuclear Medicine, 2012, 53, 121-129.	5.0	32
42	$5-(5-(6-[11C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)$ pyridin-2-yl)-1H-indole as a potential PET radioligand for imaging cerebral $\hat{l}\pm7$ -nAChR in mice. Bioorganic and Medicinal Chemistry, 2012, 20, 3698-3702.	3.0	9
43	Positron emission tomography experience with 2â€[¹⁸ F]fluoroâ€3â€(2(<i>>s</i>)â€azetidinylmethoxy)pyridine (2â€[¹⁸ F]fa) in the livir human brain of smokers with paranoid schizophrenia. Synapse, 2012, 66, 352-368.	ng.2	28
44	Improved syntheses of precursors for PET radioligands [18F]XTRA and [18F]AZAN. Tetrahedron Letters, 2010, 51, 5333-5335.	1.4	8
45	Synthesis and biodistribution of [11C]A-836339, a new potential radioligand for PET imaging of cannabinoid type 2 receptors (CB2). Bioorganic and Medicinal Chemistry, 2010, 18, 5202-5207.	3.0	93
46	Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. NeuroImage, 2010, 52, 1505-1513.	4.2	186
47	Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sciences, 2010, 86, 575-584.	4.3	54
48	Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): Development of ligands with optimized lipophilicity and binding affinity. European Journal of Medicinal Chemistry, 2009, 44, 593-608.	5 . 5	16
49	Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptors ($\hat{l}\pm4\hat{l}^22$ -nAChRs) in the brain with positron emission tomography. Bioorganic and Medicinal Chemistry, 2009, 17, 4367-4377.	3.0	11
50	Clinical Perspective and Recent Development of PET Radioligands for Imaging Cerebral Nicotinic Acetylcholine Receptors. PET Clinics, 2009, 4, 89-100.	3.0	20
51	New synthesis and evaluation of enantiomers of 7-methyl-2-exo-($3\hat{\epsilon}^2$ -iodo- $5\hat{\epsilon}^2$ -pyridinyl)-7-azabicyclo[2.2.1]heptane as stereoselective ligands for PET imaging of nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6168-6170.	2.2	11
52	Discovery of (â^²)-7-Methyl-2- <i>exo</i> -[3′-(6-[¹⁸ F]fluoropyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]hepta a Radiolabeled Antagonist for Cerebral Nicotinic Acetylcholine Receptor (α4β2-nAChR) with Optimal Positron Emission Tomography Imaging Properties. Journal of Medicinal Chemistry, 2008, 51, 4751-4764.	ane 6.4	34
53	Greater Nicotinic Acetylcholine Receptor Density in Smokers Than in Nonsmokers: A PET Study with 2- ¹⁸ F-FA-85380. Journal of Nuclear Medicine, 2008, 49, 1628-1635.	5.0	126
54	Development of Radioligands for In Vivo Imaging of Type 1 Cannabinoid Receptors (CB1) in Human Brain. Current Pharmaceutical Design, 2008, 14, 3363-3383.	1.9	47

#	Article	IF	CITATIONS
55	Derivatives of (â^')-7-Methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane Are Potential Ligands for Positron Emission Tomography Imaging of Extrathalamic Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2007, 50, 3814-3824.	6.4	14
56	6-Chloro-3-(((1-[11C]methyl)-2-(S)-pyrrolidinyl)methoxy)-5-(2-fluoropyridin-4-yl)pyridine ([11C]JHU85270), a potent ligand for nicotinic acetylcholine receptor imaging by positron emission tomography. Applied Radiation and Isotopes, 2007, 65, 947-951.	1.5	8
57	NIDA522131, a new radioligand for imaging extrathalamic nicotinic acetylcholine receptors: in vitro and in vivo evaluation. Journal of Neurochemistry, 2007, 104, 071106220615006-???.	3.9	7
58	Radiosynthesis of the $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor ligand: 5-((1-[11C]-methyl-2-(S)-pyrrolidinyl)methoxy)-2-chloro-3-((E)-2-(2-fluoropyridin-4-yl)vinyl)pyridine. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 459-462.	1.0	0
59	Synthesis of 2-[18F]fluoroadenosine (2-[18F]FAD) as potential radiotracer for studying malignancies by PET. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 811-815. Synthesis of	1.0	7
60	1 ['] (2,4-dichlorophenyl)-4-cyano-5-(4-[11C]methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide ([11C]JHU75528) and 1-(2-bromophenyl)-4-cyano-5-(4-[11C]methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide ([11C]JHU75575) as potential radioligands for PET imaging of cerebral cannabinoid receptor. Journal of	1.0	32
61	Labelled Compounds and Radiopharmaceuticals, 2006, 49, 1021-1036. The Quest for Eldorado: Development of Radioligands for In Vivo Imaging of Nicotinic Acetylcholine Receptors in Human Brain. Current Pharmaceutical Design, 2006, 12, 3877-900.	1.9	56
62	11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. Journal of Nuclear Medicine, 2006, 47, 1689-96.	5.0	84
63	In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for $\hat{l}\pm4\hat{l}^22^*$ nicotinic acetylcholine receptors. Synapse, 2005, 55, 89-97.	1.2	20
64	Pharmacological and Toxicological Evaluation of 2-Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a Ligand for Imaging Cerebral Nicotinic Acetylcholine Receptors with Positron Emission Tomography. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 355-365.	2.5	29
65	Synthesis and Structureâ^'Activity Relationship of a Novel Series of Aminoalkylindoles with Potential for Imaging the Neuronal Cannabinoid Receptor by Positron Emission Tomography. Journal of Medicinal Chemistry, 2005, 48, 5813-5822.	6.4	38
66	Evaluation of 5-(2-(4-pyridinyl)vinyl)-6-chloro-3-(1-methyl-2-(S)-pyrrolidinylmethoxy)pyridine and its analogues as PET radioligands for imaging nicotinic acetylcholine receptors. Journal of Neurochemistry, 2004, 91, 600-612.	3.9	19
67	Synthesis of 6-chloro-3-((2-(S)-azetidinyl)methoxy)-5-(2-[18F]fluoropyridin-4-yl)pyridine ([18F]NIDA) Tj ETQq1 1 PET. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 947-952.	0.784314 1.0	rgBT /Overlo
68	5-Substituted Derivatives of 6-Halogeno-3-((2-(S)-azetidinyl)methoxy)pyridine and 6-Halogeno-3-((2-(S)-pyrrolidinyl)methoxy)pyridine with Low Picomolar Affinity for α4β2 Nicotinic Acetylcholine Receptor and Wide Range of Lipophilicity: Potential Probes for Imaging with Positron Emission Tomography. Journal of Medicinal Chemistry, 2004, 47, 2453-2465.	6.4	62
69	Quantification of nicotinic acetylcholine receptors in human brain using [123I]5-I-A-85380 SPET. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 1620-1629.	6.4	45
70	Pharmacology, toxicology, and radiation dosimetry evaluation of [1231]5-l-A-85380, a radioligand for in vivo imaging of cerebral neuronal nicotinic acetylcholine receptors in humans. Drug Development Research, 2003, 58, 149-168.	2.9	12
71	Synthesis of N-(piperidin-1-yl)-5-(4-methoxyphenyl)-1-(2-chlorophenyl)-4-[18F]fluoro-1H-pyrazole-3-carboxamide by nucleophilic [18F] fluorination: a PET radiotracer for studying CB1 cannabinoid receptors. Journal of Labelled Compounds and Radiopharmaceuticals. 2003. 46. 93-98.	1.0	20
72	Graphical analysis of 2-[18F]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse, 2003, 48, 25-34.	1.2	81

#	Article	IF	CITATIONS
73	Synthesis, Structureâ^'Activity Relationship, and Evaluation of SR141716 Analogues:  Development of Central Cannabinoid Receptor Ligands with Lower Lipophilicity. Journal of Medicinal Chemistry, 2003, 46, 642-645.	6.4	125
74	2 [18 F]Fâ€A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB Journal, 2003, 17, 1331-1333.	0.5	112
75	Synthesis and Evaluation of a Novel Series of 2-Chloro-5-((1-methyl-2-(S)-pyrrolidinyl)methoxy)-3-(2-(4-pyridinyl)vinyl)pyridine Analogues as Potential Positron Emission Tomography Imaging Agents for Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2002, 45, 2841-2849.	6.4	32
76	Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123I]5-I-A-85380 in healthy human subjects. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 183-190.	6.4	56
77	Radiosynthesis of 5-(2-(4-pyridinyl)vinyl)-6-chloro-3-(1-[11 C]methyl-2-(S)-pyrrolidinylmethoxy)pyridine, a high affinity ligand for studying nicotinic acetylcholine receptors by positron emission tomography. Bioorganic and Medicinal Chemistry, 2001, 9, 3055-3058.	3.0	8
78	5-lodo-A-85380, an $\hat{l}\pm4\hat{l}^22$ Subtype-Selective Ligand for Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2000, 57, 642-649.	2.3	167
79	6-[18F]fluoro-A-85380: an in vivo tracer for the nicotinic acetylcholine receptor. Nuclear Medicine and Biology, 2000, 27, 51-56.	0.6	48
80	6-[18F]fluoro-A-85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sciences, 2000, 67, 463-469.	4.3	49
81	Radiosynthesis and preliminary evaluation of 5-[123/1251]iodo-3-(2(S)-azetidinylmethoxy)pyridine: a radioligand for nicotinic acetylcholine receptors. Nuclear Medicine and Biology, 1999, 26, 175-182.	0.6	50
82	2-[18F]F-A-85380. NeuroReport, 1999, 10, 2715-2721.	1.2	45
83	2-, 5-, and 6-Halo-3-(2(S)-azetidinylmethoxy)pyridines:Â Synthesis, Affinity for Nicotinic Acetylcholine Receptors, and Molecular Modeling. Journal of Medicinal Chemistry, 1998, 41, 3690-3698.	6.4	129
84	Synthesis of a radiotracer for studying nicotinic acetylcholine receptors: 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]A-85380). Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 309-318.	1.0	56
85	2-[18F]fluoro-A-85380, an in vivo tracer for the nicotinic acetylcholine receptors. Nuclear Medicine and Biology, 1998, 25, 599-603.	0.6	79
86	Synthesis and Evaluation of N-[11C]Methylated Analogues of Epibatidine as Tracers for Positron Emission Tomographic Studies of Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 1998, 41, 4199-4206.	6.4	59
87	Synthesis of a radiotracer for studying nicotinic acetylcholine receptors: $(+/\hat{a}^2)$ -exo-2-(2-[18F]fluoro-5-pyridyl)-7-azabicyclo[2.2.1]heptane. Journal of Labelled Compounds and Radiopharmaceuticals, 1996, 38, 355-365.	1.0	67