Takeo Oku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8277516/publications.pdf

Version: 2024-02-01

247 papers

4,955 citations

126708 33 h-index 55 g-index

251 all docs

251 docs citations

251 times ranked

3356 citing authors

#	Article	IF	CITATIONS
1	Additive Effects of Copper and Alkali Metal Halides into Methylammonium Lead Iodide Perovskite Solar Cells. Electronic Materials Letters, 2022, 18, 176-186.	1.0	20
2	Fabrication and characterization of CH ₃ NH ₃ PbI ₃ solar cells with added guanidinium and inserted with decaphenylpentasilane. Japanese Journal of Applied Physics, 2022, 61, SB1024.	0.8	23
3	Effects of Adding Alkali Metals and Organic Cations to Cu-Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 1710.	1.3	26
4	Fabrication and characterization of ethylammonium- and rubidium-added perovskite solar cells. , 2022, 9, .		2
5	Electronic structures of Eu-doped FAPbl ₃ perovskite crystals studied by first-principles calculation. , 2022, 9, .		O
6	Additive effect of lanthanide compounds into perovskite layer on photovoltaic properties and electronic structures. Synthetic Metals, 2022, 287, 117092.	2.1	12
7	Electrochemical fabrication of hierarchical thin films consisting of different polythiophenes and change in photoelectric conversion properties with film thickness. Japanese Journal of Applied Physics, 2022, 61, 061008.	0.8	2
8	Dye fluorescence enhancement by plasmonic nanostructured gold–titania film composites obtained by the combination of electrodeposition and surface sol-gel process. Journal of Sol-Gel Science and Technology, 2022, 104, 666-672.	1.1	2
9	Effects of Cu, K and Guanidinium Addition to CH3NH3PbI3 Perovskite Solar Cells. Journal of Electronic Materials, 2022, 51, 4317-4328.	1.0	23
10	Effects of mixed-valence states of Eu-doped FAPbl ₃ perovskite crystals studied by first-principles calculation. Materials Advances, 2021, 2, 2609-2616.	2.6	32
11	Fabrication and Characterization of Ni-, Co-, and Rb-Incorporated CH3NH3PbI3 Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 1980-1995.	1.0	23
12	One-pot synthesis of visible-light-responsive titanium oxide photocatalyst with embedded silver nanoparticles. Journal of Sol-Gel Science and Technology, 2021, 98, 281-287.	1.1	1
13	Effects of Polysilane Addition to Chlorobenzene and High Temperature Annealing on CH3NH3Pbl3 Perovskite Photovoltaic Devices. Coatings, 2021, 11 , 665 .	1.2	27
14	Preparation of silver-nanoparticle-loaded C60-ethylenediamine adduct microparticles and their application to photoelectric conversion. Applied Physics Express, 2021, 14, 067003.	1.1	1
15	Additive Effects of Guanidinium Iodide on CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100396.	0.8	22
16	Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. Journal of Materials Science: Materials in Electronics, 2021, 32, 26449-26464.	1.1	24
17	Fabrication and surface-enhanced Raman scattering properties of thin-film assemblies of classified silver nanoparticles. Japanese Journal of Applied Physics, 2021, 60, 027002.	0.8	1
18	Effects of zirconium addition on microstructures and thermal conductivities of carbon/copper composites. Materials Science and Technology, 2021, 37, 1090-1095.	0.8	1

#	Article	IF	CITATIONS
19	Effects of Co-Addition of CuBr2 and NaCl to CH3NH3PbI3(Cl) Perovskite Solar Cells. Materials Proceedings, 2021, 4, 54.	0.2	O
20	Development of Polysilane-Inserted Perovskite Solar Cells. Materials Proceedings, 2021, 4, 51.	0.2	0
21	Fabrication and photocatalytic behavior of titanium oxide–gold nanoparticles composite ultrathin films prepared using surface sol–gel process. Journal of Sol-Gel Science and Technology, 2020, 93, 563-569.	1.1	5
22	Polysilane-Inserted Methylammonium Lead Iodide Perovskite Solar Cells Doped with Formamidinium and Potassium. Energies, 2020, 13, 4776.	1.6	32
23	Effects of Co-Addition of Sodium Chloride and Copper(II) Bromide to Mixed-Cation Mixed-Halide Perovskite Photovoltaic Devices. ACS Applied Energy Materials, 2020, 3, 7272-7283.	2.5	37
24	Fabrication and surface-enhanced Raman scattering properties of two-dimensional gold and silver nanoparticle mixed assemblies by liquid–liquid interfacial precipitation method. Applied Physics Express, 2020, 13, 055001.	1.1	3
25	Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3Pbl3 by first-principles calculation. Journal of Materials Science, 2020, 55, 9728-9738.	1.7	18
26	Dependence of electric power flow on solar radiation power in compact photovoltaic system containing SiC-based inverter with spherical Si solar cells. Heliyon, 2020, 6, e03094.	1.4	5
27	Photovoltaic Characteristics of CH3NH3PbI3 Perovskite Solar Cells Added with Ethylammonium Bromide and Formamidinium Iodide. Coatings, 2020, 10, 410.	1.2	32
28	Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3â^' <i>x</i> (Cl, Br) <i>x</i> perovskite photovoltaic cells. AIP Advances, 2020, 10, .	0.6	32
29	Crystal structures of perovskite halide compounds used for solar cells. Reviews on Advanced Materials Science, 2020, 59, 264-305.	1.4	80
30	Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. Journal of the Ceramic Society of Japan, 2020, 128, 805-811.	0.5	27
31	Electronic Structures, Spectroscopic Properties, and Thermodynamic Characterization of Alkali Metal and Transition Metal Incorporated Perovskite Crystals by First-Principles Calculation. Materials Proceedings, 2020, 4, .	0.2	0
32	Effects of Guanidinium and Formamidinium Addition to CH3NH3PbI3-Based Perovskite Solar Cells. Materials Proceedings, 2020, 4, .	0.2	0
33	Additive effects of alkali metals on Cu-modified CH ₃ NH ₃ Pbl _{3a^i^(} Cl _{i^} photovoltaic devices. RSC Advances, 2019, 9, 24231-24240.	1.7	41
34	Effects of guanidinium addition to CH ₃ Pbl _{3â^'} <i>_{x<td>sub&gt;&li</td><td>t;/i&gt;Cl<i&</td>}</i>	sub &g t;&li	t;/i& g t;Cl<i&
35	Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3Pbl3 perovskite solar cells. Chemical Physics Letters, 2019, 737, 136822.	1.2	44
36	Fabrication and characterization of perovskite solar cells added with zinc phthalocyanine to active layer. AIP Conference Proceedings, 2019, , .	0.3	3

#	Article	IF	CITATIONS
37	Electronic Structures and Magnetic Properties of Transition Metal Doped CsPbI3 Perovskite Compounds by First-Principles Calculation. Physics of the Solid State, 2019, 61, 1074-1085.	0.2	9
38	Fullerene-based solar cells., 2019,, 661-698.		0
39	Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes. Applied Surface Science, 2019, 488, 586-592.	3.1	30
40	Fabrication and evaluation of K-doped MAO.8FAO.1KO.1PbI3(Cl) perovskite solar cells. Chemical Physics Letters, 2019, 730, 117-123.	1.2	29
41	Effects of KBr or KCl addition to CH3NH3Pbl3(Cl) photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.3	0
42	Fabrication and photovoltaic properties of an invert-type organic thin-film solar cells incorporation of phosphorescent material into electron transport layer. AIP Conference Proceedings, 2019, , .	0.3	0
43	Effects of TiO2 nanoparticles with different sizes on the performance of CH3NH3PbI3-xClx solar cells. AIP Conference Proceedings, 2019, , .	0.3	1
44	Effects of poly(methyl methacrylate) addition to perovskite photovoltaic devices. AIP Conference Proceedings, 2019, , .	0.3	14
45	Additive Effect of Formamidinium Chloride in Methylammonium Lead Halide Compound-Based Perovskite Solar Cells. Journal of Electronic Materials, 2019, 48, 3900-3907.	1.0	22
46	First-principles calculation study of electronic structures of alkali metals (Li, K, Na and) Tj ETQq0 0 0 rgBT /Overlog 912-921.	ock 10 Tf 5 3.1	50 387 Td (Rb 28
47	Effects of CuBr addition to CH3NH3Pbl3(Cl) perovskite photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	7
48	Effects of CsBr addition on the performance of CH3NH3PbI3-xClx-based solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
49	Effects of Gel2 or Znl2 addition to perovskite CH3NH3Pbl3 photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	6
50	A state-of-the-art compact SiC photovoltaic inverter with maximum power point tracking function. AIP Conference Proceedings, 2018, , .	0.3	1
51	Rietveld refinement of the crystal structure of perovskite solar cells using CH3NH3PbI3 and other compounds. AIP Conference Proceedings, 2018, , .	0.3	3
52	Insertion effect of spin-coated films of C60-ethylenediamine adduct on organic thin-film solar cells. AIP Conference Proceedings, 2018, , .	0.3	3
53	Effects of hot airflow during spin-coating process on CH3NH3PbI3-xClx perovskite solar cells. AIP Conference Proceedings, 2018 , , .	0.3	2
54	Fabrication and characterization of rubidium/formamidinium-incorporated methylammonium-lead-halide perovskite solar cells. AIP Conference Proceedings, 2018, , .	0.3	5

#	Article	IF	CITATIONS
55	Fabrication and characterization of perovskite solar cells added with MnCl2, YCl3 or poly(methyl) Tj ETQq1 1 0.3	784314 rgB1	Γ _g Overlock
56	First-principles calculation study of electronic structures and magnetic properties of Mn-doped perovskite crystals for solar cell applications. Japanese Journal of Applied Physics, 2018, 57, 02CE04.	0.8	10
57	Fabrication and characterization of CH ₃ NH ₃ (Cs)Pb(Sn)I ₃ (Cl) perovskite solar cells with TiO ₂ nanoparticle layers. Japanese Journal of Applied Physics, 2018, 57, 02CE03.	0.8	11
58	Microstructures, optical and photovoltaic properties of CH ₃ NH ₃ Pbl _{3(1â°'<i>x</i>)} Cl _{<i>x</i>} perovskite films with CuSCN additive. Materials Research Express, 2018, 5, 055504.	0.8	11
59	Effects of annealing on CH ₃ Pbl ₃ (Cl) perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2018, 126, 56-60.	0.5	32
60	Highly (100)-oriented CH ₃ NH ₃ Pbl ₃ (Cl) perovskite solar cells prepared with NH ₄ Cl using an air blow method. RSC Advances, 2018, 8, 10389-10395.	1.7	63
61	Effects of Excess Pbl ₂ Addition to CH ₃ NH ₃ Pbl _{3â^'<i>x</i>Cells. Chemistry Letters, 2018, 47, 528-531.}	0.7	21
62	Rietveld refinement of crystal structure of perovskite CH ₃ NH ₃ Pb(Sb)I ₃ solar cells. Japanese Journal of Applied Physics, 2018, 57, 02CE02.	0.8	11
63	Effects of Decaphenylcyclopentasilane Addition on Photovoltaic Properties of Perovskite Solar Cells. Coatings, 2018, 8, 461.	1.2	15
64	Fabrication and Characterization of CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells Added with Polysilanes. International Journal of Photoenergy, 2018, 2018, 1-7.	1.4	27
65	Stability Characterization of PbI2-Added CH3NH3PbI3–xClx Photovoltaic Devices. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 44443-44451.	4.0	27
66	Time-dependent non-linear size change of C60-ethylenediamine adduct particles in formation process. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	8
67	Effects of transition metals incorporated into perovskite crystals on the electronic structures and magnetic properties by first-principles calculation. Heliyon, 2018, 4, e00755.	1.4	25
68	Fabrication and Characterization of the copper bromides-added CH3NH3PbI3-xClx perovskite solar cells. Synthetic Metals, 2018, 244, 128-133.	2.1	16
69	Effects of Cu addition to perovskite CH ₃ NH ₃ Pbl _{3â^'} <i>_x </i> Cl <i>_x </i> photovoltaic devices with hot airflow during spin-coating. Japanese Journal of Applied Physics, 2018, 57, 08RE10.	0.8	17
70	Effects of halide addition to arsenic-doped perovskite photovoltaic devices. AIP Conference Proceedings, 2018, , .	0.3	4
71	Structural stabilities of organic–inorganic perovskite crystals. Japanese Journal of Applied Physics, 2018, 57, 08RE12.	0.8	42
72	Effects of PbI ₂ addition and TiO ₂ electron transport layers for perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 08RE05.	0.8	22

#	Article	IF	Citations
73	Possible Applications of Nanomaterials for Nuclear Fusion Devices. Energy Harvesting and Systems, 2018, 5, 11-27.	1.7	5
74	Dendritic Structures of Photovoltaic Perovskite Crystals. Materia Japan, 2018, 57, 601-601.	0.1	2
75	Fabrication and characterization of perovskite-based CH3NH3Pb1-xAsxI3+xCly photovoltaic devices. AIP Conference Proceedings, 2017, , .	0.3	1
76	Effects of halogen doping on the photovoltaic properties of HC(NH2)2PbI3 perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.3	16
77	Fabrication and characterization of CH3NH3(Cs)Pb(Sn)I3(Br) perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.3	11
78	Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer. AIP Conference Proceedings, 2017, , .	0.3	1
79	Photovoltaic properties of Cu-doped CH3NH3Pbl3 with perovskite structure. AIP Conference Proceedings, 2017, , .	0.3	15
80	Doping effects of transition metal elements to titanium dioxide for perovskite solar cells. AIP Conference Proceedings, 2017, , .	0.3	5
81	Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers. AIP Conference Proceedings, 2017, , .	0.3	6
82	Comparative study of SiC- and Si-based photovoltaic inverters. AIP Conference Proceedings, 2017, , .	0.3	6
83	A compact SiC photovoltaic inverter with maximum power point tracking function. Solar Energy, 2017, 141, 228-235.	2.9	16
84	Effects of SbBr3 addition to CH3NH3Pbl3 solar cells. AIP Conference Proceedings, 2017, , .	0.3	11
85	Effects of copper addition on photovoltaic properties of perovskite CH ₃ NH ₃ Pbl _{3â^'<i>x</i>} Cl _{<i>x</i>} solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700268.	0.8	17
86	Effect of gold nanoparticles in titanium oxide layer on the photovoltaic performance of inverted-type organic thin-film solar cells. Molecular Crystals and Liquid Crystals, 2017, 653, 50-56.	0.4	3
87	Effects of polysilaneâ€doped spiroâ€OMeTAD hole transport layers on photovoltaic properties. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600591.	0.8	13
88	Effects of heat treatment on fluorine-doped tin oxide anti-reflection films coated on silicon spheres. Journal of the Ceramic Society of Japan, 2017, 125, 145-149.	0.5	0
89	A Transportable Photovoltaic Power Generation System Utilizing a SiC Inverter and Spherical Si Solar Cells. Technologies, 2017, 5, 18.	3.0	5
90	Effects of NH ₄ Cl addition to perovskite CH ₃ NH ₃ 9bl ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2017, 125, 303-307.	0.5	36

#	Article	IF	CITATIONS
91	Fabrication and Characterization of Element-Doped Perovskite Solar Cells., 2017,,.		1
92	Electronic Structures, and Optical and Magnetic Properties of Quadruple-Decker Phthalocyanines. Magnetochemistry, 2017, 3, 21.	1.0	2
93	Construction of Photovoltaic Power Generation-storage System Using an Inverter with SiC FET and SBD. Advances in Energy and Power, 2017, 5, 7-12.	0.7	2
94	Effects of Metal Phthalocyanines as Hole-transporting Layers of Perovskite-based Solar Cells. Chemical and Materials Engineering, 2017, 5, 34-42.	0.7	4
95	Effects of CsI and/or SnBr ₂ Additions to CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Nanoscience and Nanoengineering, 2017, 5, 25-30.	0.8	1
96	Arsenic and Chlorine Co-Doping to CH <sub>NH₃Pbl<sub&perovskite 07,="" 1-10.<="" 2017,="" advances="" and="" cells.="" chemistry,="" in="" materials="" physics="" solar="" td=""><td>anopşgt;38</td><td>&aութ;lt;/subն</td></sub&perovskite></sub>	anopşgt;38	&a ու թ;lt;/subն
97	Effects of PBr ₃ Addition to Polysilane Thin Films on Structures and Photovoltaic Properties. Green and Sustainable Chemistry, 2017, 07, 20-34.	0.8	5
98	Comparison between SiC- and Si-Based Inverters for Photovoltaic Power Generation Systems. Journal of Power and Energy Engineering, 2017, 05, 30-40.	0.3	3
99	Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers. Materials Sciences and Applications, 2017, 08, 209-222.	0.3	4
100	4. Inorganic solar cells. , 2016, , 43-68.		0
101	5. Organic-type solar cells. , 2016, , 69-108.		0
102	6. Perovskite-type solar cells. , 2016, , 109-152.		0
103	9. Other energy materials. , 2016, , 187-224.		0
104	Fabrication and Characterization of CH3NH3PbI3â^'xâ^'yBrxCly Perovskite Solar Cells. Energies, 2016, 9, 376.	1.6	25
105	Effects of Cl Addition to Sb-Doped Perovskite-Type CH3NH3Pbl3 Photovoltaic Devices. Metals, 2016, 6, 147.	1.0	43
106	Effects of chlorine addition to perovskite-type CH ₃ NH ₃ photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 234-238.	0.5	33
107	Fabrication and characterization of bismuth ferrite as an electron transport layer in perovskite photovoltaic devices. Journal of the Ceramic Society of Japan, 2016, 124, 602-605.	0.5	3
108	Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines. AIP Conference Proceedings, 2016, , .	0.3	2

#	Article	IF	Citations
109	Low temperature fabrication of perovskite solar cells with TiO2 nanoparticle layers. AIP Conference Proceedings, 2016, , .	0.3	6
110	Role of bromine doping on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells. AIP Conference Proceedings, 2016, , .	0.3	12
111	Microstructure analysis of spherical silicon solar cells with SnOx:Fy layers. AIP Conference Proceedings, 2016, , .	0.3	2
112	Fabrication and characterization of perovskite-based CH3NH3Pb1-xGexl3, CH3NH3Pb1-xTlxl3 and CH3NH3Pb1-xInxl3 photovoltaic devices. AIP Conference Proceedings, 2016, , .	0.3	24
113	Low-temperature synthesis of titanium oxide/gold nanoparticle composite powders using a combination of the sol–gel process and ultraviolet light irradiation. Journal of Sol-Gel Science and Technology, 2016, 78, 692-697.	1.1	5
114	Photovoltaic properties of perovskite-type solar cells with polysilane-doped hole transport layers. , 2016, , .		0
115	Effects of Antimony Addition to Perovskite-type CH ₃ NH ₃ Pbl ₃ Photovoltaic Devices. Chemistry Letters, 2016, 45, 134-136.	0.7	63
116	Fabrication and Photocurrent Generation Properties of Insoluble Hierarchical Polythiophene Thin Films Prepared by Sequential Electrochemical Polymerization. Bulletin of the Chemical Society of Japan, 2016, 89, 700-704.	2.0	4
117	Fabrication and characterization of BiFeO <inf> 3</inf> thin films and application for photovoltaic devices. , 2016, , .		0
118	Microstructures and Optical Properties of Silicon Spheres for Solar Cells. Materials Transactions, 2016, 57, 1082-1087.	0.4	3
119	Construction and evaluation of photovoltaic power generation and power storage system using SiC field-effect transistor inverter. AIP Conference Proceedings, 2016, , .	0.3	6
120	Evaluation of photovoltaic power generation system using spherical silicon solar cells and SiC-FET inverter. AIP Conference Proceedings, 2016, , .	0.3	6
121	Effects of hole-transporting layers of perovskite-based solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF01.	0.8	16
122	Synthesis, Structures and Properties of Boron Nitride Nanoparticles. , 2016, , 1-40.		0
123	Effects of Niobium Addition into TiO2 Layers on CH3NH3Pbl3-based Photovoltaic Devices. Chemistry Letters, 2015, 44, 1033-1035.	0.7	21
124	Formation of Thin Films of Densely Packed [60]Fullerene–Diaminoethane Adduct Microparticles at a Liquid/Liquid Interface and Their Photoelectrochemical Applications. Chemistry Letters, 2015, 44, 489-491.	0.7	6
125	Microstructures and properties of CH3NH3Pbl3â^'xClx hybrid solar cells., 2015,,.		8
126	Effect of Gold and Silver Nanoparticle in Poly(3,4-Ethylenedioxythiophene)-Poly(Styrene Sulfonate) layer on Inverted-Type Organic Thin-Film Solar Cells. Transactions of the Materials Research Society of Japan, 2015, 40, 331-334.	0.2	0

#	Article	IF	CITATIONS
127	Fabrication and Characterization of a Perovskite-Type Solar Cell with a Substrate Size of 70 mm. Coatings, 2015, 5, 646-655.	1.2	24
128	Construction and characterization of spherical Si solar cells combined with SiC electric power inverter. AIP Conference Proceedings, 2015, , .	0.3	9
129	Syntheses, Structures and Properties of Boron Nitride Nanoparticles. , 2015, , 1-32.		0
130	Hydrogen Storage in Boron Nitride and Carbon Nanomaterials. Energies, 2015, 8, 319-337.	1.6	39
131	Hydrogen Storage and Possible Condensation of Deuterium in Palladium. Nanoscience and Nanotechnology - Asia, 2015, 5, 137-143.	0.3	1
132	Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells. Electronics (Switzerland), 2014, 3, 112-121.	1.8	8
133	Fabrication and characterization of PCBM:P3HT:silicon phthalocyanine bulk heterojunction solar cells with inverted structures. Japanese Journal of Applied Physics, 2014, 53, 05FJ08.	0.8	11
134	High-resolution electron microscopy and electron diffraction of perovskite-type superconducting copper oxides. Nanotechnology Reviews, 2014, 3, .	2.6	16
135	Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive. , 2014, , .		5
136	Microstructures and photovoltaic properties of perovskite-type CH ₃ NH ₃ Pbl ₃ compounds. Applied Physics Express, 2014, 7, 121601.	1.1	99
137	Effect of annealing on photovoltaic properties and microstructure of conventional and inverted organic solar cells using active bilayer based on liquid-crystal semiconducting polymer and fullerene. International Journal of Energy Research, 2014, 38, 1541-1550.	2.2	7
138	Fabrication and Characterization of Phthalocyanine-Based Organic Solar Cells. Materials Sciences and Applications, 2014, 05, 278-284.	0.3	5
139	Microstructures, optical and photoelectric conversion properties of spherical silicon solar cells with anti-reflection SnO _x :F thin films. Japanese Journal of Applied Physics, 2014, 53, 05FJ03.	0.8	18
140	Effect of gold nanoparticle in holeâ€transport layer on inverted organic thinâ€film solar cell performance. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1645-1650.	0.8	8
141	C ₆₀ –ethylenediamine adduct thin film as a buffer layer for inverted-type organic solar cells. RSC Advances, 2014, 4, 34950.	1.7	10
142	Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene. Progress in Natural Science: Materials International, 2014, 24, 179-183.	1.8	4
143	Facile Fabrication and Photovoltaic Application of [60] Fullerene Assembly Films Formed by Reaction between Fullerene and Amines. Bulletin of the Chemical Society of Japan, 2014, 87, 1335-1342.	2.0	11
144	Fabrication and Characterization of TiO2/CH3NH3Pbl3-based Photovoltaic Devices. Chemistry Letters, 2014, 43, 916-918.	0.7	37

#	Article	IF	CITATIONS
145	Fabrication and characterization of organic solar cells using titanylphthalocyanine as hole transport layer. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2861-2864.	0.8	4
146	Fabrication and characterization of polysilane: PCBM bulk heterojunction solar cells. Open Engineering, 2013, 3, .	0.7	2
147	Fabrication and characterization of fullerene-based solar cells containing phthalocyanine and naphthalocyanine dimers. Synthetic Metals, 2013, 177, 48-51.	2.1	18
148	Fabrication and Characterization of ZnO/Cu ₂ O Solar Cells Prepared by Electrodeposition. Applied Physics Express, 2013, 6, 086503.	1.1	57
149	Fabrication and characterization of copper oxide-zinc oxide solar cells prepared by electrodeposition. Journal of Physics: Conference Series, 2013, 433, 012024.	0.3	27
150	Influence of chemical substitution in ScxY3â^'xN@C80(CF3)n endohedral fullerenes on magnetic properties. Physica B: Condensed Matter, 2013, 428, 18-26.	1.3	8
151	Microstructures and Photovoltaic Properties of Polysilane-Based Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 04CR07.	0.8	27
152	Fabrication and characterization of PCBM:P3HT bulk heterojunction solar cells doped with silicon naphthalocyanine. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1836-1839.	0.8	5
153	Preparation and Photovoltaic Application of Fullerene–Porphyrin Composite Micropowder. Chemistry Letters, 2013, 42, 694-696.	0.7	2
154	Facile Solubilization and Photovoltaic Application of C60 Fullerene–Ethylenediamine Adduct. Chemistry Letters, 2013, 42, 177-179.	0.7	10
155	Fabrication and characterization of silicon naphthalocyanine, gallium phthalocyanine and fullerene-based organic solar cells with inverted structures. Journal of Physics: Conference Series, 2013, 433, 012025.	0.3	7
156	Effects of phosphorus addition to polyâ€methylâ€phenylâ€silane based photovoltaic devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1832-1835.	0.8	2
157	Microstructure analysis and properties of spherical silicon solar cells with anti-reflection thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1840-1843.	0.8	2
158	Direct structure analysis of advanced nanomaterials by high-resolution electron microscopy. Nanotechnology Reviews, 2012, 1, 389-425.	2.6	23
159	Fabrication and characterization of polysilane/C ₆₀ thin film solar cells. Journal of Physics: Conference Series, 2012, 352, 012019.	0.3	5
160	Fabrication and characterization of tetracyanoquinodimethane/phthalocyanine solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 877-881.	1.7	18
161	Effects of germanium addition to copper phthalocyanine/fullerene-based solar cells. Open Engineering, 2012, 2, .	0.7	5
162	Effect of perylenetetracarboxylic dianhydride layer as a hole blocking layer on photovoltaic performance of poly-vinylcarbazole: C60 bulk heterojunction thin films. Thin Solid Films, 2012, 520, 2545-2548.	0.8	5

#	Article	IF	CITATIONS
163	Effects of Au Nanoparticle Addition to Hole Transfer Layer in Organic Photovoltaic Cells Based on Phthalocyanines and Fullerene. Journal of Nanotechnology, 2011, 2011, 1-6.	1.5	2
164	Fabrication and Characterization of CuO-based Solar Cells. Journal of Materials Science Research, $2011, 1, \ldots$	0.1	32
165	Fabrication and characterization of copper oxides/fullerene solar cells prepared by an electrodeposition method. Journal of the Ceramic Society of Japan, 2011, 119, 402-404.	0.5	4
166	Structures and photovoltaic properties of copper oxides/fullerene solar cells. Journal of Physics and Chemistry of Solids, 2011, 72, 1206-1211.	1.9	62
167	Formation and characterization of phthalocyanine dimer/C60 solar cells. Progress in Natural Science: Materials International, 2011, 21, 27-30.	1.8	4
168	Fabrication and characterization of TiO2-based dye-sensitized solar cells. Progress in Natural Science: Materials International, 2011, 21, 122-126.	1.8	44
169	Fabrication and photovoltaic property of diamond:fullerene nanocomposite thin films. Journal of the Ceramic Society of Japan, 2010, 118, 1006-1008.	0.5	6
170	Fabrication and characterization of titanium dioxide/copper indium disulfide solar cells. Journal of the Ceramic Society of Japan, 2010, 118, 30-33.	0.5	2
171	Structure and photovoltaic activity of cupric oxide-based thin film solar cells. Journal of the Ceramic Society of Japan, 2010, 118, 1021-1023.	0.5	27
172	Fabrication and characterization of fullerene/porphyrin bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2010, 71, 551-555.	1.9	61
173	Fabrication, nanostructures and electronic properties of nanodiamond-based solar cells. Progress in Natural Science: Materials International, 2010, 20, 38-43.	1.8	38
174	The effects of exciton-diffusion blocking layers on pentacene/C60 bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2010, 71, 210-213.	1.9	9
175	Fabrication and characterization of C60/tetrathiafulvalene solar cells. Journal of Physics and Chemistry of Solids, 2010, 71, 1587-1591.	1.9	7
176	Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells. Advances in Materials Science and Engineering, 2010, 2010, 1-11.	1.0	14
177	Fabrication and Characterization of Fullerene-Based Bulk Heterojunction Solar Cells with Porphyrin, CulnS2, Diamond and Exciton-Diffusion Blocking Layer. Energies, 2010, 3, 671-685.	1.6	32
178	Fabrication and characterization of cuprous oxide: fullerene solar cells. Synthetic Metals, 2010, 160, 1219-1222.	2.1	15
179	Formation and characterization of copper tetrakis (4-cumylphenoxy) phthalocyanine:perylene solar cells. Synthetic Metals, 2009, 159, 1345-1348.	2.1	8
180	Fabrication and characterization of mixture type dye-sensitized solar cells with organic dyes. Journal of the Ceramic Society of Japan, 2009, 117, 964-966.	0.5	3

#	Article	IF	CITATIONS
181	Fabrication and characterization of inorganic-organic hybrid solar cells based on CuInS2. Journal of the Ceramic Society of Japan, 2009, 117, 967-969.	0.5	18
182	Boron Nitride Nanocage Clusters, Nanotubes, Nanohorns, Nanoparticles, and Nanocapsules. , 2009, , 149-194.		15
183	Structures and purification of boron nitride nanotubes synthesized from boron-based powders with iron particles. Journal of Materials Science, 2008, 43, 2955-2961.	1.7	20
184	Electronic and optical properties of boron nitride nanotubes. Journal of Physics and Chemistry of Solids, 2008, 69, 1228-1231.	1.9	34
185	Formation and characterization of polymer/fullerene bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2008, 69, 1276-1279.	1.9	34
186	Synthesis and nanostructure of boron nitride nanotubes grown from iron-evaporated boron. Diamond and Related Materials, 2008, 17, 1805-1807.	1.8	12
187	Effect of Central Metal Ion, Co ^{II} in the Fe ^{II} Spin-Crossover Complex in Emulsion Polymerization of Trifluoroethylmethacrylate Using Poly(Vinyl) Tj ETQq1 1	0.7 8 4814	rgBT /Overloo
188	Growth of Boron Nitride Nanohorn Structures. Materials Transactions, 2008, 49, 2461-2464.	0.4	11
189	Formation and Characterization of Bulk Hetero-Junction Solar Cells Using C ₆₀ and Perylene. Materials Transactions, 2008, 49, 2457-2460.	0.4	18
190	Synthesis and magnetic property of boron nitride nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2008, 16, 79-83.	0.0	0
191	Formation and Atomic Structures of Boron Nitride Nanotubes with Cup-Stacked and Fe Nanowire Encapsulated Structures. Materials Transactions, 2007, 48, 722-729.	0.4	10
192	Effects of titanium addition on the microstructure of carbon/copper composite materials. Solid State Communications, 2007, 141, 132-135.	0.9	18
193	Formation and atomic structure of boron nitride nanotubes with a cup-stacked structure. Solid State Communications, 2007, 143, 331-336.	0.9	21
194	Atomic structures and formation mechanism of boron nitride nanotubes and nanohorns synthesized by arc-melting LaB6 powders. Journal of the European Ceramic Society, 2006, 26, 435-441.	2.8	14
195	Synthesis and magnetic property of boron nitride nanocapsules encaging iron and cobalt nanoparticles. Journal of Physics and Chemistry of Solids, 2006, 67, 1152-1156.	1.9	38
196	Formation, Atomic Structures and Properties of Carbon Nanocage Materials. Topics in Applied Physics, 2006, , 187-216.	0.4	27
197	Synthesis of huge boron nitride cages. Diamond and Related Materials, 2005, 14, 1190-1192.	1.8	26
198	Atomic and electronic structures of multiply-twinned boron nitride nanoparticles with fivefold symmetry. Diamond and Related Materials, 2005, 14, 1193-1197.	1.8	9

#	Article	IF	Citations
199	Atomic and electronic structures of boron nitride nanohorns studied by high-resolution electron microscopy and molecular orbital calculations. Diamond and Related Materials, 2005, 14, 1183-1189.	1.8	12
200	Atomic structures and stability of boron nitride nanotubes with a cup-stacked structure. Diamond and Related Materials, 2005 , 14 , $1163-1168$.	1.8	10
201	Origin of the nanocrystalline interface in superconducting Bi-2223/Ag composites: a SEM/HREM study. Superconductor Science and Technology, 2004, 17, 750-755.	1.8	6
202	Formation, atomic structural optimization and electronic structures of tetrahedral carbon onion. Diamond and Related Materials, 2004, 13, 1337-1341.	1.8	22
203	High-resolution electron microscopy of boron nitride nanotube with yttrium nanowire. Journal of Physics and Chemistry of Solids, 2004, 65, 359-361.	1.9	14
204	Formation and atomic structures of BnNn (n=24–60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations. Physica B: Condensed Matter, 2004, 351, 184-190.	1.3	83
205	Three-dimensional atomic imaging of Y and (B12)13clusters in YB56by HREM and crystallographic image processing. Science and Technology of Advanced Materials, 2004, 5, 657-661.	2.8	6
206	Hydrogen storage in boron nitride nanomaterials studied by TG/DTA and cluster calculation. Journal of Physics and Chemistry of Solids, 2004, 65, 549-552.	1.9	100
207	Microstructures and magnetic properties of boron nitride- and carbon-coated iron nanoparticles synthesized by a solid phase reaction. Journal of Materials Chemistry, 2004, 14, 253.	6.7	28
208	Atomic structures and stabilities of zigzag- and armchair-type boron nitride nanotubes studied by high-resolution electron microscopy and molecular mechanics calculation. Diamond and Related Materials, 2004, 13, 1254-1260.	1.8	15
209	Formation and structure of B24N24 clusters. Chemical Physics Letters, 2003, 380, 620-623.	1.2	168
210	Formation and structures of multiply-twinned nanoparticles with fivefold symmetry in chemical vapor deposited boron nitride. Diamond and Related Materials, 2003, 12, 1918-1926.	1.8	59
211	Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method. Diamond and Related Materials, 2003, 12, 1138-1145.	1.8	64
212	Synthesis of boron nitride nanotubes by using NbB2, YB6 and YB6/Ni powders. Diamond and Related Materials, 2003, 12, 1912-1917.	1.8	19
213	Atomic and electronic structures of Si-included C74 cluster studied by HREM and molecular orbital calculations. Diamond and Related Materials, 2002, 11, 935-939.	1.8	7
214	Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Solid State Sciences, 2001, 3, 597-612.	0.8	252
215	Atomic structures and stability of hexagonal BN, diamond and Au multiply-twinned nanoparticles with five-fold symmetry. Diamond and Related Materials, 2001, 10, 1398-1403.	1.8	28
216	Atomic structure of YB56 studied by digital high-resolution electron microscopy and electron diffraction. Journal of Materials Research, 2001, 16, 101-107.	1.2	9

#	Article	IF	Citations
217	Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 206-217.	1.7	203
218	Formation and photoluminescence of Ge and Si nanoparticles encapsulated in oxide layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 242-247.	1.7	36
219	Chemical synthesis of silver nanoparticles encapsulated in boron nitride nanocages. Journal of Materials Chemistry, 2000, 10, 255-257.	6.7	46
220	Formation and structure of carbon nanocage structures produced by polymer pyrolysis and electron-beam irradiation. Journal of Materials Research, 1999, 14, 4266-4273.	1.2	15
221	Oxygen arrangement on Hg0.5Tl0.5Ba2CuOx (100) surface studied by high-resolution electron microscopy. Applied Physics Letters, 1999, 75, 2226-2228.	1.5	23
222	Possible detection of doping atoms in C60 solid clusters by high-resolution electron microscopy. Carbon, 1999, 37, 1299-1309.	5 . 4	14
223	The Structure of Iron Oxide Implanted Zeolite Y, Determined by High-Resolution Electron Microscopy and Refined with Selected Area Electron Diffraction Amplitudes. Chemistry - A European Journal, 1999, 5, 244-249.	1.7	22
224	Digital HREM Imaging of Yttrium Atoms in YB56with YB66Structure. Journal of Solid State Chemistry, 1998, 135, 182-193.	1.4	34
225	Effects of titanium impregnation on the thermal conductivity of carbon/copper composite materials. Journal of Nuclear Materials, 1998, 257, 59-66.	1.3	37
226	Surface structures of (Hg, T1)-based oxides studied by high-resolution electron microscopy. Surface Science, 1998, 407, L647-L651.	0.8	14
227	Formation of carbon nanocapsules with SiC nanoparticles prepared by polymer pyrolysis. Journal of Materials Chemistry, 1998, 8, 1323-1325.	6.7	35
228	Crystal structure of HgTlBa ₂ CuO _x studied by high-resolution electron microscopy. Journal of Materials Research, 1998, 13, 1136-1140.	1.2	27
229	Diffusion barriers between Si and Cu., 1998,,.		4
230	Formation of WSi-based ohmic contacts to n-type GaAs. Thin Solid Films, 1997, 300, 218-222.	0.8	11
231	Superconductivity in the overdoping state of the (Hg,Tl)(Ba,La)2CuOÏ and (Hg,Tl)2Ba2CuOν systems. Physica C: Superconductivity and Its Applications, 1996, 262, 1-6.	0.6	19
232	Diffusion barrier property of TaN between Si and Cu. Applied Surface Science, 1996, 99, 265-272.	3.1	226
233	WNx diffusion barriers between Si and Cu. Thin Solid Films, 1996, 286, 170-175.	0.8	135
234	NiGeâ€based ohmic contacts tonâ€type GaAs. II. Effects of Au addition. Journal of Applied Physics, 1994, 75, 2530-2537.	1.1	18

#	Article	IF	CITATIONS
235	Structure analysis of oxygen-deficient TlSr2CuOy by neutron diffraction and high-resolution electron microscopy. Physica C: Superconductivity and Its Applications, 1994, 221, 261-268.	0.6	26
236	NiGeâ€based ohmic contacts tonâ€type GaAs. I. Effects of In addition. Journal of Applied Physics, 1994, 75, 2522-2529.	1.1	31
237	Chemical characterization and superconductivity of Tl2Ba2â^'xLaxCuOy with the orthorhombic and tetragonal structures. Physica C: Superconductivity and Its Applications, 1993, 214, 80-86.	0.6	11
238	Disordering of Pb and Cu arrangements in the block layers of Pb2Sr2YCu3O8+Î′ and PbBaSrYCu3O7+Î′ by oxygen introduction. Physica C: Superconductivity and Its Applications, 1993, 215, 243-252.	0.6	14
239	Synthesis and crystal structure of Pb2Sr2(Ln,Ce)nCu3O6+2n+Î′ and Pb(Ba,Sr)2(Ln,Ce)nCu3O5+2n+Î′ (Ln=Y,n=3,4,… and O⩽Î⩽22.0), layered structure compounds with multiple fluorite layers. Physica C: Superconductivity and Its Applications, 1991, 181, 311-319.	0.6	40
240	Shockâ€induced superconductivity of Tl2Ba2CuO6. Applied Physics Letters, 1990, 57, 813-815.	1.5	7
241	Fivefold multiply-twinned precipitates in chemically vapour-deposited boron nitride studied by transmission electron microscopy. Journal of Materials Science Letters, 1989, 8, 130-134.	0.5	19
242	Fabrication and Characterization of Fullerene / Dibenzo-Tetrathiafulvalene Solar Cells. Materials Science Forum, 0, 688, 80-84.	0.3	2
243	Synthesis, Atomic Structures and Properties of Boron Nitride Nanotubes. , 0, , .		4
244	Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells., 0,,.		75
245	Effects of co-addition of copper, sodium and ethylammonium to CH ₃ Pbl _{3Pbl_{Pbl>Pbl&}}}}}}}}}}}}}}}}}}}}}}}}}	kamp;gt;3	&a m p;lt;/sub8
246	Fabrication and characterization of perovskite solar cells using copper phthalocyanine complex with tetracyanoquinodimethane. , 0, , .		0
247	Effects of Cu, K and guanidinium addition to CH ₃ Pbl _{Pbl>Pbl>P}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	kamp;gt;3	&a m p;lt;/sub8