Karen Vanhoorelbeke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Autoantibody-Induced Pathology. Frontiers in Immunology, 2017, 8, 603.	4.8	377
2	ADAMTS13 and anti-ADAMTS13 antibodies as markers for recurrence of acquired thrombotic thrombocytopenic purpura during remission. Haematologica, 2008, 93, 232-239.	3.5	250
3	Thrombotic thrombocytopenic purpura. Nature Reviews Disease Primers, 2017, 3, 17020.	30.5	242
4	Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure*. Critical Care Medicine, 2007, 35, 2375-2382.	0.9	167
5	Structural analysis of ischemic stroke thrombi: histological indications for therapy resistance. Haematologica, 2020, 105, 498-507.	3.5	154
6	ADAMTS13-mediated thrombolysis of t-PA–resistant occlusions in ischemic stroke in mice. Blood, 2016, 127, 2337-2345.	1.4	138
7	ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. British Journal of Haematology, 2007, 138, 534-540.	2.5	135
8	Allosteric activation of ADAMTS13 by von Willebrand factor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18584-18589.	7.1	123
9	Conformational activation of ADAMTS13. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18578-18583.	7.1	111
10	Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio) Tj ETQqC) 0 0 rgBT 1.4	/Overlock 10 104
11	Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood, 2018, 132, 2143-2153.	1.4	102
12	Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor–binding protein. Blood, 2014, 124, 1669-1676.	1.4	96
13	Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood, 2017, 130, 466-471.	1.4	92
14	ADAMTSâ€13 plasma level determination uncovers antigen absence in acquired thrombotic thrombocytopenic purpura and ethnic differences. Journal of Thrombosis and Haemostasis, 2006, 4, 955-962.	3.8	86
15	Multiâ€step binding of ADAMTSâ€13 to von Willebrand factor. Journal of Thrombosis and Haemostasis, 2009, 7, 2088-2095.	3.8	79
16	An open conformation of ADAMTSâ€13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2018, 16, 378-388.	3.8	72
17	Plasmin Cleavage of von Willebrand Factor as an Emergency Bypass for ADAMTS13 Deficiency in Thrombotic Microangiopathy. Circulation, 2014, 129, 1320-1331.	1.6	69
18	Platelet-derived VWF is not essential for normal thrombosis and hemostasis but fosters ischemic stroke injury in mice. Blood, 2015, 126, 1715-1722.	1.4	65

#	Article	IF	CITATIONS
19	Restoration of Plasma von Willebrand Factor Deficiency Is Sufficient to Correct Thrombus Formation After Gene Therapy for Severe von Willebrand Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1621-1626.	2.4	64
20	Potential for Recombinant ADAMTS13 as an Effective Therapy for Acquired Thrombotic Thrombocytopenic Purpura. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2336-2342.	2.4	64
21	Binding of von Willebrand Factor to Collagen and Glycoprotein Ibα, But Not to Glycoprotein IIb/IIIa, Contributes to Ischemic Stroke in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1949-1951.	2.4	63
22	Linker regions and flexibility around the metalloprotease domain account for conformational activation of ADAMTSâ€13. Journal of Thrombosis and Haemostasis, 2015, 13, 2063-2075.	3.8	58
23	Crystal structure and substrate-induced activation of ADAMTS13. Nature Communications, 2019, 10, 3781.	12.8	56
24	N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood, 2017, 129, 1030-1038.	1.4	53
25	Animal models for thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2013, 11, 2-10.	3.8	52
26	First report of a de novo iTTP episode associated with an mRNAâ€based antiâ€COVIDâ€19 vaccination. Journal of Thrombosis and Haemostasis, 2021, 19, 2014-2018.	3.8	52
27	Inhibition of Thrombin-Activatable Fibrinolysis Inhibitor and Plasminogen Activator Inhibitor-1 Reduces Ischemic Brain Damage in Mice. Stroke, 2016, 47, 2419-2422.	2.0	48
28	Local Elongation of Endothelial Cell-anchored von Willebrand Factor Strings Precedes ADAMTS13 Protein-mediated Proteolysis. Journal of Biological Chemistry, 2011, 286, 36361-36367.	3.4	46
29	Inhibition of von Willebrand factor–platelet glycoprotein Ib interaction prevents and reverses symptoms of acute acquired thrombotic thrombocytopenic purpura in baboons. Blood, 2012, 120, 3611-3614.	1.4	40
30	ADAMTS13 Gene Mutations Influence ADAMTS13 Conformation and Disease Age-Onset in the French Cohort of Upshaw–Schulman Syndrome. Thrombosis and Haemostasis, 2018, 118, 1902-1917.	3.4	40
31	Open ADAMTS13, induced by antibodies, is a biomarker for subclinical immune-mediated thrombotic thrombocytopenic purpura. Blood, 2020, 136, 353-361.	1.4	35
32	Imbalance of von Willebrand factor and ADAMTS13 axis is rather a biomarker of strong inflammation and endothelial damage than a cause of thrombotic process in critically ill COVIDâ€19 patients. Journal of Thrombosis and Haemostasis, 2021, 19, 2193-2198.	3.8	33
33	Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: interplay between genes and environmental triggers. Haematologica, 2018, 103, 1099-1109.	3.5	31
34	Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function. Blood Advances, 2020, 4, 1072-1080.	5.2	28
35	The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS ONE, 2017, 12, e0173329.	2.5	27
36	Anti-ADAMTS13 Autoantibodies against Cryptic Epitopes in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Thrombosis and Haemostasis, 2018, 118, 1729-1742.	3.4	24

#	Article	IF	CITATIONS
37	Crystal structure of ADAMTS13 CUB domains reveals their role in global latency. Science Advances, 2021, 7, .	10.3	24
38	Human platelets produced in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice upon transplantation of human cord blood CD34+ cells are functionally active in an ex vivo flow model of thrombosis. Blood, 2009, 114, 5044-5051.	1.4	23
39	ADAMTS13 and anti-ADAMTS13 autoantibodies in thrombotic thrombocytopenic purpura – current perspectives and new treatment strategies. Expert Review of Hematology, 2016, 9, 209-221.	2.2	23
40	Exploring the "minimal―structure of a functional ADAMTS13 by mutagenesis and small-angle X-ray scattering. Blood, 2019, 133, 1909-1918.	1.4	23
41	Phylogenetic and functional analysis of ADAMTS13 identifies highly conserved domains essential for allosteric regulation. Blood, 2019, 133, 1899-1908.	1.4	23
42	Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His ₆ -Tagged Bioreceptors for Applications in Complex Matrices. ACS Sensors, 2020, 5, 960-969.	7.8	23
43	Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Scientific Reports, 2015, 5, 13532.	3.3	21
44	Long-Term Prevention of Congenital Thrombotic Thrombocytopenic Purpura in ADAMTS13 Knockout Mice by Sleeping Beauty Transposon-Mediated Gene Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 836-844.	2.4	19
45	Co(III)-NTA Mediated Antigen Immobilization on a Fiber Optic-SPR Biosensor for Detection of Autoantibodies in Autoimmune Diseases: Application in Immune-Mediated Thrombotic Thrombocytopenic Purpura. Analytical Chemistry, 2020, 92, 13880-13887.	6.5	19
46	The novel ADAMTS13â€p.D187H mutation impairs ADAMTS13 activity and secretion and contributes to thrombotic thrombocytopenic purpura in mice. Journal of Thrombosis and Haemostasis, 2015, 13, 283-292.	3.8	17
47	Understanding therapeutic targets in thrombotic thrombocytopenic purpura. Intensive Care Medicine, 2017, 43, 1398-1400.	8.2	17
48	Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ. Haematologica, 2018, 103, 1083-1092.	3.5	17
49	ADAMTS13 in Health and Disease. Acta Haematologica, 2009, 121, 183-185.	1.4	16
50	Insights into 3D Structure of ADAMTS13: A Stepping Stone towards Novel Therapeutic Treatment of Thrombotic Thrombocytopenic Purpura. Thrombosis and Haemostasis, 2018, 118, 028-041.	3.4	16
51	Modifying ADAMTS13 to modulate binding of pathogenic autoantibodies of patients with acquired thrombotic thrombocytopenic purpura. Haematologica, 2020, 105, 2619-2630.	3.5	16
52	Immunogenic hotspots in the spacer domain of ADAMTS13 in immuneâ€nediated thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2021, 19, 478-488.	3.8	16
53	Anti-ADAMTS13 autoantibody profiling in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Advances, 2021, 5, 3427-3435.	5.2	16
54	Microlyse: a thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood, 2022, 139, 597-607.	1.4	16

#	Article	IF	CITATIONS
55	Keeping von Willebrand Factor under Control: Alternatives for ADAMTS13. Seminars in Thrombosis and Hemostasis, 2016, 42, 009-017.	2.7	15
56	Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 2316-2326.	8.0	15
57	Amplified endogenous plasmin activity resolves acute thrombotic thrombocytopenic purpura in mice. Journal of Thrombosis and Haemostasis, 2017, 15, 2432-2442.	3.8	14
58	Plasma and rhADAMTS13 reduce trauma-induced organ failure by restoring the ADAMTS13-VWF axis. Blood Advances, 2021, 5, 3478-3491.	5.2	14
59	Generation of Anti-Murine ADAMTS13 Antibodies and Their Application in a Mouse Model for Acquired Thrombotic Thrombocytopenic Purpura. PLoS ONE, 2016, 11, e0160388.	2.5	14
60	ADAMTSâ€13 glycans and conformationâ€dependent activity. Journal of Thrombosis and Haemostasis, 2017, 15, 1155-1166.	3.8	13
61	Major Changes of von Willebrand Factor Multimer Distribution in Cirrhotic Patients with Stable Disease or Acute Decompensation. Thrombosis and Haemostasis, 2018, 118, 1397-1408.	3.4	13
62	Deletion of platelet CLEC-2 decreases GPIba-mediated integrin allbb3 activation and decreases thrombosis in TTP. Blood, 2022, , .	1.4	13
63	Antiâ€ADAMTS13 autoantibodies in immuneâ€mediated thrombotic thrombocytopenic purpura do not hamper ELISAâ€based quantification of ADAMTS13 antigen. Journal of Thrombosis and Haemostasis, 2020, 18, 985-990.	3.8	12
64	Evaluation of Immuno-Rolling Circle Amplification for Multiplex Detection and Profiling of Antigen-Specific Antibody Isotypes. Analytical Chemistry, 2021, 93, 6169-6177.	6.5	12
65	<scp>TTP</scp> : From empiricism for an enigmatic disease to targeted molecular therapies. British Journal of Haematology, 2022, 197, 156-170.	2.5	12
66	Thrombus formation during ECMO: Insights from a detailed histological analysis of thrombus composition. Journal of Thrombosis and Haemostasis, 2022, 20, 2058-2069.	3.8	12
67	Anti-ADAMTS13 Antibodies and a Novel Heterozygous p.R1177Q Mutation in a Case of Pregnancy-Onset Immune-Mediated Thrombotic Thrombocytopenic Purpura. TH Open, 2018, 02, e8-e15.	1.4	11
68	N-glycan–mediated shielding of ADAMTS13 prevents binding of pathogenic autoantibodies in immune-mediated TTP. Blood, 2021, 137, 2694-2698.	1.4	11
69	Gold nanoparticle enhanced multiplexed biosensing on a fiber optic surface plasmon resonance probe. Biosensors and Bioelectronics, 2021, 192, 113549.	10.1	11
70	Insights into ADAMTS13 structure: impact on thrombotic thrombocytopenic purpura diagnosis and management. Current Opinion in Hematology, 2020, 27, 320-326.	2.5	10
71	Miniaturized single-cell technologies for monoclonal antibody discovery. Lab on A Chip, 2021, 21, 3627-3654.	6.0	10
72	Structure-Based Cyclic Glycoprotein Ibα-Derived Peptides Interfering with von Willebrand Factor-Binding, Affecting Platelet Aggregation under Shear. International Journal of Molecular Sciences, 2022, 23, 2046.	4.1	10

#	Article	IF	CITATIONS
73	In vivo von Willebrand factor size heterogeneity in spite of the clinical deficiency of ADAMTS-13. Journal of Thrombosis and Haemostasis, 2011, 9, 2506-2508.	3.8	9
74	Improved molecular platform for the gene therapy of rare diseases by liver protein secretion. European Journal of Medical Genetics, 2018, 61, 723-728.	1.3	9
75	Generation and validation of small ADAMTS13 fragments for epitope mapping of antiâ€ADAMTS13 autoantibodies in immuneâ€mediated thrombotic thrombocytopenic purpura. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 918-930.	2.3	9
76	Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cellular Immunology, 2018, 332, 129-133.	3.0	8
77	von Willebrand factor in experimental malariaâ€associated acute respiratory distress syndrome. Journal of Thrombosis and Haemostasis, 2019, 17, 1372-1383.	3.8	8
78	Determination of antiâ€ADAMTSâ€13 autoantibody titers in ELISA: Influence of ADAMTSâ€13 presentation and autoantibody detection. Journal of Thrombosis and Haemostasis, 2021, 19, 2248-2255.	3.8	7
79	Differences in von Willebrand factor function in type 2A von Willebrand disease and left ventricular assist deviceâ€induced acquired von Willebrand syndrome. Research and Practice in Thrombosis and Haemostasis, 2018, 2, 762-766.	2.3	6
80	Antithrombin p.Thr147Ala: The First Founder Mutation in People of African Origin Responsible for Inherited Antithrombin Deficiency. Thrombosis and Haemostasis, 2021, 121, 182-191.	3.4	6
81	Anti-cysteine/spacer antibodies that open ADAMTS13 are a common feature in iTTP. Blood Advances, 2021, 5, 4480-4484.	5.2	6
82	Generation of anti-idiotypic antibodies to detect anti-spacer antibody idiotopes in acute thrombotic thrombocytopenic purpura patients. Haematologica, 2019, 104, 1268-1276.	3.5	5
83	ADAMTS13 conformation is closed in non-immune acquired thrombotic thrombocytopenic purpura of unidentified pathophysiology. Haematologica, 2023, 108, 638-644.	3.5	5
84	von Willebrand factor deficiency does not influence angiotensin II-induced abdominal aortic aneurysm formation in mice. Scientific Reports, 2018, 8, 16645.	3.3	4
85	Childâ€onset thrombotic thrombocytopenic purpura caused by p.R498C and p.G259PfsX133 mutations in ADAMTS13. European Journal of Haematology, 2018, 101, 191-199.	2.2	4
86	Understanding the Health Literacy in Patients With Thrombotic Thrombocytopenic Purpura. HemaSphere, 2020, 4, e462.	2.7	4
87	Conformational plasticity of ADAMTS13 in hemostasis and autoimmunity. Journal of Biological Chemistry, 2021, 297, 101132.	3.4	4
88	von Willebrand factor increases in experimental cerebral malaria but is not essential for lateâ€stage pathogenesis in mice. Journal of Thrombosis and Haemostasis, 2020, 18, 2377-2390.	3.8	2
89	Single Particle Tracking of ADAMTS13 (A Disintegrin and Metalloprotease with Thrombospondin Type-1) Tj ETQq1 2014, 289, 8903-8915.	1 0.7843 3.4	14 rgBT /O 1
90	Response to Letter Regarding Article, "Plasmin Cleavage of von Willebrand Factor as an Emergency Bypass for ADAMTS13 Deficiency in Thrombotic Microangiopathy― Circulation, 2015, 131, e19-20.	1.6	1

#	Article	IF	CITATIONS
91	PROFILE: Earlyâ€Stage Researchers Advancing Insights in TTP Through a Unique PhD Track. HemaSphere, 2018, 2, e22.	2.7	1
92	Acquired von Willebrand syndrome in patients on long-term left ventricular assist device support: Results of a Belgian center. Thrombosis Research, 2019, 184, 77-80.	1.7	1
93	Transfer of ADAMTS13 antibody-mediated thrombotic thrombocytopenic purpura via kidney transplantation. Haematologica, 2019, 104, e277-e280.	3.5	1
94	Update – PROFILE: Early‣tage Researchers Advancing Insights on TTP through a Unique PhD Track. HemaSphere, 2019, 3, e281.	2.7	1
95	Artificial MiRNA Knockdown of Platelet Glycoprotein lbα: A Tool for Platelet Gene Silencing. PLoS ONE, 2015, 10, e0132899.	2.5	Ο
96	P5119Differences in VWF activity in von willebrand disease type 2A patients versus LVAD patients with the acquired von willebrand syndrome. European Heart Journal, 2018, 39, .	2.2	0
97	Improvement of recombinant <scp>ADAMTS13</scp> production through a more optimal signal peptide or an Nâ€ŧerminal fusion protein. Journal of Thrombosis and Haemostasis, 0, , .	3.8	0