Elisa Fresta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276379/publications.pdf Version: 2024-02-01

FLICA EDESTA

#	Article	IF	CITATIONS
1	Novel Redâ€Emitting Copper(I) Complexes with Pyrazine and Pyrimidinyl Ancillary Ligands for White Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2022, 10, 2101999.	7.3	14
2	Multivariate Analysis Identifying [Cu(N^N)(P^P)] ⁺ Design and Device Architecture Enables Firstâ€Class Blue and White Lightâ€Emitting Electrochemical Cells. Advanced Materials, 2022, 34, e2109228.	21.0	18
3	Supramolecular Chalcogenâ€Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angewandte Chemie, 2022, 134, .	2.0	3
4	Supramolecular Chalcogenâ€Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
5	Versatile Biogenic Electrolytes for Highly Performing and Selfâ€Stable Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	14.9	8
6	Towards rainbow photo/electro-luminescence in copper(<scp>i</scp>) complexes with the versatile bridged bis-pyridyl ancillary ligand. Dalton Transactions, 2021, 50, 11049-11060.	3.3	11
7	BODIPYâ€Ptâ€Porphyrins Polyads for Efficient Nearâ€Infrared Lightâ€Emitting Electrochemical Cells. Advanced Photonics Research, 2021, 2, 2000188.	3.6	10
8	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	19.5	15
9	Microwave-Assisted Synthesis, Optical and Theoretical Characterization of Novel 2-(imidazo[1,5-a]pyridine-1-yl)pyridinium Salts. Chemistry, 2021, 3, 714-727.	2.2	7
10	Strategies to increase the quantum yield: Luminescent methoxylated imidazo[1,5-a]pyridines. Dyes and Pigments, 2021, 192, 109455.	3.7	11
11	Versatile Homoleptic Naphthylâ€Acetylide Heteronuclear [Pt 2 M 4 (CCâ€Np) 8] (M = Ag, Cu) Phosphors for Highly Efficient White and NIR Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901126.	7.3	6
12	Bright, stable, and efficient red light-emitting electrochemical cells using contorted nanographenes. Nanoscale Horizons, 2020, 5, 473-480.	8.0	18
13	Revealing the Impact of Heat Generation Using Nanographene-Based Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 28426-28434.	8.0	24
14	Advances and Challenges in White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1908176.	14.9	34
15	Origin of the Exclusive Ternary Electroluminescent Behavior of BNâ€Doped Nanographenes in Efficient Singleâ€Component White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906830.	14.9	23
16	Key Ionic Electrolytes for Highly Selfâ€ S table Lightâ€Emitting Electrochemical Cells Based on Ir(III) Complexes. Advanced Optical Materials, 2020, 8, 2000295.	7.3	18
17	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	38.1	93
18	White Lightâ€Emitting Electrochemical Cells Based on Deepâ€Red Cu(I) Complexes. Advanced Optical Materials, 2019, 7, 1900830.	7.3	50

Elisa Fresta

#	Article	IF	CITATIONS
19	Deciphering the Electroluminescence Behavior of Silver(I)â€Complexes in Lightâ€Emitting Electrochemical Cells: Limitations and Solutions toward Highly Stable Devices. Advanced Functional Materials, 2019, 29, 1901797.	14.9	25
20	Photoluminescent Cu(<scp>i</scp>) <i>vs.</i> Ag(<scp>i</scp>) complexes: slowing down emission in Cu(<scp>i</scp>) complexes by pentacoordinate low-lying excited states. Dalton Transactions, 2019, 48, 9765-9775.	3.3	16
21	Synthesis and Crystal Structure of Bis(2-phenylpyridine-C,N')-bis(acetonitrile)iridium(III)hexafluorophosphate Showing Three Anion/Cation Couples in the Asymmetric Unit. Crystals, 2019, 9, 617.	2.2	2
22	White-emitting organometallo-silica nanoparticles for sun-like light-emitting diodes. Materials Horizons, 2019, 6, 130-136.	12.2	32
23	Rationalizing Fabrication and Design Toward Highly Efficient and Stable Blue Lightâ€Emitting Electrochemical Cells Based on NHC Copper(I) Complexes. Advanced Functional Materials, 2018, 28, 1707423.	14.9	61
24	Contextualizing yellow light-emitting electrochemical cells based on a blue-emitting imidazo-pyridine emitter. Polyhedron, 2018, 140, 129-137.	2.2	39
25	Merging Biology and Solidâ€6tate Lighting: Recent Advances in Lightâ€Emitting Diodes Based on Biological Materials. Advanced Functional Materials, 2018, 28, 1707011.	14.9	63
26	Peripheral Substitution of Tetraphenyl Porphyrins: Fineâ€Tuning Selfâ€Assembly for Enhanced Electroluminescence. ChemPlusChem, 2018, 83, 254-265.	2.8	4
27	Novel Ligand and Device Designs for Stable Light-Emitting Electrochemical Cells Based on Heteroleptic Copper(I) Complexes. Inorganic Chemistry, 2018, 57, 10469-10479.	4.0	59
28	White perovskite based lighting devices. Chemical Communications, 2018, 54, 8150-8169.	4.1	70
29	Beyond traditional light-emitting electrochemical cells – a review of new device designs and emitters.	5.5	210