Christophe Gantzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276247/publications.pdf

Version: 2024-02-01

218381 197535 2,469 59 26 49 citations g-index h-index papers 61 61 61 2122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A nationwide indicator to smooth and normalize heterogeneous SARS-CoV-2 RNA data in wastewater. Environment International, 2022, 158, 106998.	4.8	31
2	New method to quantify hydrophobicity of non-enveloped virions in aqueous media by capillary zone electrophoresis. Virology, 2022, 568, 23-30.	1.1	5
3	Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity. ACS Applied Bio Materials, 2021, 4, 2614-2627.	2.3	5
4	The Utility of Dreissena polymorpha for Assessing the Viral Contamination of Rivers by Measuring the Accumulation of F-Specific RNA Bacteriophages. Water (Switzerland), 2021, 13, 904.	1.2	5
5	Variability in molecular characteristics of Hepatitis E virus quasispecies could modify viral surface properties and transmission. Journal of Viral Hepatitis, 2021, 28, 1078-1090.	1.0	1
6	Free Chlorine and Peroxynitrite Alter the Capsid Structure of Human Norovirus GII.4 and Its Capacity to Bind Histo-Blood Group Antigens. Frontiers in Microbiology, 2021, 12, 662764.	1.5	1
7	Epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultrafiltration- and protein precipitation-based methods. International Journal of Hygiene and Environmental Health, 2021, 233, 113692.	2.1	42
8	Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses, 2021, 13, 1376.	1.5	1
9	F-Specific RNA Bacteriophage Transport in Stream Water: Hydro-Meteorological Controls and Association with Suspended Solids. Water (Switzerland), 2021, 13, 2250.	1.2	2
10	Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Research, 2021, 202, 117435.	5.3	50
11	Somatic coliphages are conservative indicators of SARS-CoV-2 inactivation during heat and alkaline pH treatments. Science of the Total Environment, 2021, 797, 149112.	3.9	17
12	Interaction between norovirus and Histo-Blood Group Antigens: A key to understanding virus transmission and inactivation through treatments?. Food Microbiology, 2020, 92, 103594.	2.1	13
13	The effect of proteolytic enzymes and pH on GII.4 norovirus, during both interactions and non-interaction with Histo-Blood Group Antigens. Scientific Reports, 2020, 10, 17926.	1.6	5
14	Inactivation of hepatitis A virus and murine norovirus on surfaces of plastic, steel and raspberries using steam-ultrasound treatment. Food and Environmental Virology, 2020, 12, 295-309.	1.5	6
15	Structural Organizations of $Q\hat{1}^2$ and MS2 Phages Affect Capsid Protein Modifications by Oxidants Hypochlorous Acid and Peroxynitrite. Frontiers in Microbiology, 2020, 11, 1157.	1.5	14
16	F-Specific RNA Bacteriophages Model the Behavior of Human Noroviruses during Purification of Oysters: the Main Mechanism Is Probably Inactivation Rather than Release. Applied and Environmental Microbiology, 2020, 86, .	1.4	8
17	Effect of natural ageing and heat treatments on GII.4 norovirus binding to Histo-Blood Group Antigens. Scientific Reports, 2019, 9, 15312.	1.6	11
18	Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Reviews in Medical Virology, 2019, 29, e2078.	3.9	15

#	Article	IF	CITATIONS
19	Influence of physico-chemical characteristics of sediment on the <i>in situ</i> spatial distribution of F-specific RNA phages in the riverbed. FEMS Microbiology Ecology, 2019, 95, .	1.3	8
20	MS2 and Qβ bacteriophages reveal the contribution of surface hydrophobicity on the mobility of nonâ€enveloped icosahedral viruses in SDSâ€based capillary zone electrophoresis. Electrophoresis, 2018, 39, 377-385.	1.3	9
21	F-Specific RNA Bacteriophages, Especially Members of Subgroup II, Should Be Reconsidered as Good Indicators of Viral Pollution of Oysters. Applied and Environmental Microbiology, 2018, 84, .	1.4	15
22	On the Infectivity of Bacteriophages in Polyelectrolyte Multilayer Films: Inhibition or Preservation of Their Bacteriolytic Activity?. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33545-33555.	4.0	6
23	The impact of chlorine and heat on the infectivity and physicochemical properties of bacteriophage MS2. FEMS Microbiology Ecology, 2018, 94, .	1.3	5
24	Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiology, 2018, 70, 1-6.	2.1	51
25	Interactions of infectious F-specific RNA bacteriophages with suspended matter and sediment: Towards an understanding of FRNAPH distribution in a river water system. Science of the Total Environment, 2017, 574, 960-968.	3.9	30
26	In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies. Food and Environmental Virology, 2017, 9, 89-102.	1.5	17
27	Rapid and sensitive method to assess human viral pollution in shellfish using infectious F-specific RNA bacteriophages: Application to marketed products. Food Microbiology, 2017, 63, 248-254.	2.1	13
28	Removal of model viruses, E. coli and Cryptosporidium oocysts from surface water by zirconium and chitosan coagulants. Journal of Water and Health, 2017, 15, 695-705.	1.1	9
29	The Effect of Heat and Free Chlorine Treatments on the Surface Properties of Murine Norovirus. Food and Environmental Virology, 2017, 9, 149-158.	1.5	17
30	Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events. Water Research, 2016, 94, 328-340.	5. 3	27
31	Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters. Applied and Environmental Microbiology, 2016, 82, 5709-5719.	1.4	24
32	Impact of reducing and oxidizing agents on the infectivity of $Q\hat{l}^2$ phage and the overall structure of its capsid. FEMS Microbiology Ecology, 2016, 92, fiw153.	1.3	17
33	The Effect of Heat on the Physicochemical Properties of Bacteriophage MS2. Food and Environmental Virology, 2016, 8, 251-261.	1.5	34
34	Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. Journal of Colloid and Interface Science, 2015, 446, 327-334.	5 . O	81
35	Rapid, simple and efficient method for detection of viral genomes on raspberries. Journal of Virological Methods, 2015, 224, 95-101.	1.0	21
36	Occurrence of and Sequence Variation among F-Specific RNA Bacteriophage Subgroups in Feces and Wastewater of Urban and Animal Origins. Applied and Environmental Microbiology, 2015, 81, 6505-6515.	1.4	35

#	Article	IF	CITATIONS
37	Distinct adsorption kinetics of $Q\hat{l}^2$ and GA bacteriophages on drinking water biofilms. Adsorption, 2014, 20, 823-828.	1.4	5
38	Two-day detection of infectious enteric and non-enteric adenoviruses by improved ICC-qPCR. Applied Microbiology and Biotechnology, 2013, 97, 4159-4166.	1.7	18
39	Adhesion of human pathogenic enteric viruses and surrogate viruses to inert andÂvegetal food surfaces. Food Microbiology, 2012, 32, 48-56.	2.1	39
40	Accumulation of MS2, GA, and $Q\hat{l}^2$ phages on high density polyethylene (HDPE) and drinking water biofilms under flow/non-flow conditions. Water Research, 2012, 46, 6574-6584.	5. 3	15
41	Removal of MS2, $Q\hat{1}^2$ and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 2012, 46, 2651-2664.	5. 3	89
42	Surveillance of adenoviruses and noroviruses in European recreational waters. Water Research, 2011, 45, 1025-1038.	5. 3	231
43	Occurrence, Survival, and Persistence of Human Adenoviruses and F-Specific RNA Phages in Raw Groundwater. Applied and Environmental Microbiology, 2010, 76, 8019-8025.	1.4	103
44	Efficiency of MS2 phage and Q^2 phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method. Journal of Membrane Science, 2009, 326, 111-116.	4.1	82
45	Relationship between F-specific RNA phage genogroups, faecal pollution indicators and human adenoviruses in river water. Water Research, 2009, 43, 1257-1264.	5.3	69
46	Occurrence and persistence of enteroviruses, noroviruses and F-specific RNA phages in natural wastewater biofilms. Water Research, 2009, 43, 4780-4789.	5. 3	62
47	Impact of Chemical and Structural Anisotropy on the Electrophoretic Mobility of Spherical Soft Multilayer Particles: The Case of Bacteriophage MS2. Biophysical Journal, 2008, 94, 3293-3312.	0.2	126
48	Aggregation and surface properties of F-specific RNA phages: Implication for membrane filtration processes. Water Research, 2008, 42, 2769-2777.	5. 3	145
49	Interactions of <i>Cryptosporidium parvum</i> , <i>Giardia lamblia</i> , Vaccinal Poliovirus Type 1, and Bacteriophages φX174 and MS2 with a Drinking Water Biofilm and a Wastewater Biofilm. Applied and Environmental Microbiology, 2008, 74, 2079-2088.	1.4	83
50	Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups: Application to urban raw wastewater. Journal of Virological Methods, 2006, 138, 131-139.	1.0	101
51	Inactivation of Poliovirus 1 and F-Specific RNA Phages and Degradation of Their Genomes by UV Irradiation at 254 Nanometers. Applied and Environmental Microbiology, 2006, 72, 7671-7677.	1.4	116
52	Integrated Analysis of Established and Novel Microbial and Chemical Methods for Microbial Source Tracking. Applied and Environmental Microbiology, 2006, 72, 5915-5926.	1.4	145
53	Method for Isolation of Bacteroides Bacteriophage Host Strains Suitable for Tracking Sources of Fecal Pollution in Water. Applied and Environmental Microbiology, 2005, 71, 5659-5662.	1.4	83
54	Adhesion-Aggregation and Inactivation of Poliovirus 1 in Groundwater Stored in a Hydrophobic Container. Applied and Environmental Microbiology, 2005, 71, 912-920.	1.4	52

#	Article	IF	CITATIONS
55	Improved specificity for Giardia lamblia cyst quantification in wastewater by development of a real-time PCR method. Journal of Microbiological Methods, 2004, 57, 41-53.	0.7	53
56	Tracking the origin of faecal pollution in surface water: an ongoing project within the European Union research programme. Journal of Water and Health, 2004, 2, 249-60.	1.1	12
57	Presence of Viral Genomes in Mineral Water: a Sufficient Condition To Assume Infectious Risk?. Applied and Environmental Microbiology, 2003, 69, 3965-3969.	1.4	87
58	Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. International Journal of Hygiene and Environmental Health, 2002, 205, 325-328.	2.1	26
59	Poliovirusâ€1 adsorption onto and desorption from montmorillonite in seawater. Survival of the adsorbed virus. Environmental Technology (United Kingdom), 1994, 15, 271-278.	1.2	24