Christophe Prud'homme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8276145/publications.pdf Version: 2024-02-01

CHRISTORNE PRIID'HOMME

#	Article	IF	CITATIONS
1	Uncertainty propagation and sensitivity analysis: results from the Ocular Mathematical Virtual Simulator. Mathematical Biosciences and Engineering, 2021, 18, 2010-2032.	1.0	4
2	High-Order Finite-Element Framework for the Efficient Simulation of Multifluid Flows. Mathematics, 2018, 6, 203.	1.1	5
3	Substructuring preconditioners forhâ^'pMortar FEM. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 1057-1082.	0.8	0
4	Simultaneous empirical interpolation and reduced basis method for non-linear problems. Comptes Rendus Mathematique, 2015, 353, 1105-1109.	0.1	11
5	Hemodynamic simulations in the cerebral venous network: A study on the influence of different modeling assumptions. Journal of Coupled Systems and Multiscale Dynamics, 2015, 3, 23-37.	0.2	5
6	Numerical analysis method of heat transfer in an electronic component using sensitivity analysis. Journal of Computational Electronics, 2014, 13, 1042-1053.	1.3	3
7	High-order fluid–structure interaction in 2D and 3D application to blood flow in arteries. Journal of Computational and Applied Mathematics, 2013, 246, 1-9.	1.1	20
8	A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes. BIT Numerical Mathematics, 2013, 53, 111-152.	1.0	6
9	Scalable domain decomposition preconditioners for heterogeneous elliptic problems. , 2013, , .		22
10	Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods. ESAIM: Proceedings and Surveys, 2012, 38, 429-455.	0.4	37
11	<i>A priori</i> convergence of the Greedy algorithm for the parametrized reduced basis method. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46, 595-603.	0.8	187
12	Construction of a high order fluid–structure interaction solver. Journal of Computational and Applied Mathematics, 2010, 234, 2358-2365.	1.1	9
13	Basic concepts to design a DSL for parallel finite volume applications. , 2009, , .		3
14	A Domain Specific Embedded Language in C++ for Automatic Differentiation, Projection, Integration and Variational Formulations. Scientific Programming, 2006, 14, 81-110.	0.5	28
15	Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. Comptes Rendus Mathematique, 2003, 337, 619-624.	0.1	72
16	A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2002, 36, 747-771.	0.8	35