Luigi Fortuna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275233/publications.pdf

Version: 2024-02-01

55	1,192	17 h-index	34
papers	citations		g-index
56	56	56	1147
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synchronization of Moving Chaotic Agents. Physical Review Letters, 2008, 100, 044102.	7.8	158
2	Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Physical Review E, 2014, 90, 032905.	2.1	150
3	Control of imperfect dynamical systems. Nonlinear Dynamics, 2019, 98, 2989-2999.	5.2	112
4	THE CNN PARADIGM: SHAPES AND COMPLEXITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2063-2090.	1.7	103
5	Analysis of remote synchronization in complex networks. Chaos, 2013, 23, 043103.	2.5	73
6	Memristor-Based Adaptive Coupling for Consensus and Synchronization. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 1175-1184.	5.4	56
7	Imperfections in Integrated Devices Allow the Emergence of Unexpected Strange Attractors in Electronic Circuits. IEEE Access, 2021, 9, 29573-29583.	4.2	55
8	Special issue on Complexity in Engineering. Nonlinear Dynamics, 2018, 92, 1-2.	5.2	45
9	A Concise Guide to Chaotic Electronic Circuits. SpringerBriefs in Applied Sciences and Technology, 2014, , .	0.4	44
10	Spatial Pinning Control. Physical Review Letters, 2012, 108, 204102.	7.8	39
11	Synchronization of two Rössler systems with switching coupling. Nonlinear Dynamics, 2017, 88, 673-683.	5.2	36
12	CHAOS DOES HELP MOTION CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3577-3581.	1.7	35
13	A polymeric micro-optical system for the spatial monitoring in two-phase microfluidics. Microfluidics and Nanofluidics, 2012, 12, 165-174.	2.2	30
14	Can Noise in the Feedback Improve the Performance of a Control System?. Journal of the Physical Society of Japan, 2021, 90, 075002.	1.6	23
15	An Improved Instrument for Real-Time Measurement of Blood Flow Velocity in Microvessels. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2663-2671.	4.7	22
16	Nonideal Behavior of Analog Multipliers for Chaos Generation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 396-400.	3.0	22
17	Microfluidic circuits and systems. IEEE Circuits and Systems Magazine, 2009, 9, 6-19.	2.3	20
18	Force Feedback Assistance in Remote Ultrasound Scan Procedures. Energies, 2020, 13, 3376.	3.1	14

#	Article	IF	CITATIONS
19	Multi-jump resonance systems. International Journal of Control, 2020, 93, 282-292.	1.9	13
20	Automation of the Leonardo da Vinci Machines. Machines, 2020, 8, 53.	2.2	13
21	Multiple Hysteresis Jump Resonance in a Class of Forced Nonlinear Circuits and Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050258.	1.7	12
22	Chaos Addresses Energy in Networks of Electrical Oscillators. IEEE Access, 2021, 9, 153258-153265.	4.2	12
23	Dynamics of neuron populations in noisy environments. Chaos, 2005, 15, 014102.	2.5	11
24	Reviewing Bioinspired Technologies for Future Trends: A Complex Systems Point of View. Frontiers in Physics, 2021, 9, .	2.1	10
25	Remote Ultrasound Scan Procedures with Medical Robots: Towards New Perspectives between Medicine and Engineering. Applied Bionics and Biomechanics, 2022, 2022, 1-12.	1.1	9
26	Human Control Model Estimation in Physical Human–Machine Interaction: A Survey. Sensors, 2022, 22, 1732.	3.8	9
27	Delay Independent Stability Control for Commensurate Multiple Time-Delay Systems., 2021, 5, 1249-1254.		6
28	Nyquist Plots for MIMO Systems Under Frequency Transformations., 2022, 6, 169-174.		6
29	Synchronization of chaotic systems with activity-driven time-varying interactions. Journal of Complex Networks, 2018, 6, 173-186.	1.8	5
30	A Comparative Analysis of Computer-Aided Design Tools for Complex Power Electronics Systems. Energies, 2021, 14, 7729.	3.1	5
31	Jump Resonance in Fractional Order Circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850016.	1.7	4
32	Nyquist plots under frequency transformations. Systems and Control Letters, 2019, 125, 16-21.	2.3	4
33	Data-driven order reduction in Hammerstein–Wiener models of plasma dynamics. Engineering Applications of Artificial Intelligence, 2021, 100, 104180.	8.1	4
34	Model Identification to Validate Printed Circuit Boards for Power Applications: A New Technique. IEEE Access, 2022, 10, 31760-31774.	4.2	4
35	Hankel Singular Values and LQG Characteristic Values of Discrete-Time Linear Systems in Cascade With Inner Systems. IEEE Transactions on Automatic Control, 2020, 65, 4989-4994.	5.7	3
36	LQG control of linear lossless positive-real systems: the continuous-time and discrete-time cases. International Journal of Dynamics and Control, 0, , 1.	2.5	3

#	Article	IF	CITATIONS
37	Stochastic Resonance in Electromechanical Vibrating Systems. Journal of the Physical Society of Japan, 2020, 89, 115001.	1.6	3
38	Ebatronics: A New Paradigm for Experimental Laboratory in Applied Science and Technology. The Physics Educator, 2021, 03, .	0.4	3
39	Incremental Adaptive Gesture Classifier for Upper Limb Prostheses. IEEE Sensors Journal, 2022, 22, 14273-14283.	4.7	3
40	A data driven model of TiO <inf>2</inf> printed memristors., 2013,,.		2
41	A New Time-Delay Model for Chaotic Glucose-Insulin Regulatory System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050178.	1.7	2
42	Generalizing the Letov formula for the discrete-time case. International Journal of Dynamics and Control, 0 , , .	2.5	2
43	COMPLEXITY IN AN INDUSTRIAL FLYBACK CONVERTER. Journal of Circuits, Systems and Computers, 1995, 05, 627-633.	1.5	1
44	Nonlinear effects for the reinforcement of small neural ensembles in high dimensional brain. Physics of Life Reviews, 2019, 29, 101-103.	2.8	1
45	Cascading With Inner Systems: Hankel Singular Values and Characteristic Values. IEEE Transactions on Automatic Control, 2020, 65, 727-732.	5.7	1
46	The generalized Letov formula for MIMO not-strictly proper systems. International Journal of Dynamics and Control, 0 , 1 .	2.5	1
47	Resonance. Bulletin of the Gioenia Academy of Catania, 2021, 54, OL1-OL22.	0.2	0
48	Synchronization in Time-Varying Networks. SpringerBriefs in Applied Sciences and Technology, 2018, , 93-107.	0.4	0
49	The impact of Cellular Nonlinear Networks in a Scientific Community: the case of the Etna Valley. , 2021, , .		0
50	Jump Resonance in Electromechanical Systems. IFAC-PapersOnLine, 2021, 54, 32-35.	0.9	0
51	Selective frequency drift detectors based on multiple hysteresis jump resonance. , 2021, , .		0
52	Multiple Hysteresis Jump Resonance in a Class of Oscillators with Nonic Polynomial Nonlinearity. , 2022, , $513-521$.		0
53	How Nonlinear Science Leads to Continuous Innovation in an Academic and Productive High-Tech Community. Nonlinear Phenomena in Complex Systems, 2022, 25, 1-12.	0.3	0
54	Nyquist plots under frequency transformations: the discrete-time case., 2022,, 1-1.		0

Luigi Fortuna

#	Article	IF	CITATIONS
55	A New Asymptotic Stability Criterion for Linear Discrete-time Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, , 1-1.	3.0	O