Hideaki Kagami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275214/publications.pdf

Version: 2024-02-01

		1039880	642610
33	559	9	23
papers	citations	h-index	g-index
33	33	33	798
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Effective Bone Engineering with Periosteum-derived Cells. Journal of Dental Research, 2007, 86, 79-83.	2.5	121
2	Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: Basic science to clinical translation. International Journal of Biochemistry and Cell Biology, 2011, 43, 286-289.	1.2	77
3	Characteristic Change and Loss of <i>In Vivo</i> Osteogenic Abilities of Human Bone Marrow Stromal Cells During Passage. Tissue Engineering - Part A, 2010, 16, 663-673.	1.6	59
4	Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Research Notes, 2019, 12, 383.	0.6	58
5	Gingival and dermal fibroblasts: Their similarities and differences revealed from gene expression. Journal of Bioscience and Bioengineering, 2011, 111, 255-258.	1.1	33
6	Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00350.	2.1	31
7	The Use of Bone Marrow Stromal Cells (Bone Marrow-Derived Multipotent Mesenchymal Stromal) Tj ETQq1 1 0.7 Part B: Reviews, 2014, 20, 229-232.	784314 rg 2.5	BT /Overlock 26
8	Comparing immunocompetent and immunodeficient mice as animal models for bone tissue engineering. Oral Diseases, 2015, 21, 583-592.	1.5	18
9	Bone marrow stromal cell therapy improves femoral bone mineral density and mechanical strength in ovariectomized rats. Cytotherapy, 2008, 10, 479-489.	0.3	17
10	The potential use of cellâ€based therapies in the treatment of oral diseases. Oral Diseases, 2015, 21, 545-549.	1.5	10
11	Characteristic differences among osteogenic cell populations of rat bone marrow stromal cells isolated from untreated, hemolyzed or Ficoll-treated marrow. Cytotherapy, 2012, 14, 791-801.	0.3	9
12	Spontaneously Formed Spheroids from Mouse Compact Bone-Derived Cells Retain Highly Potent Stem Cells with Enhanced Differentiation Capability. Stem Cells International, 2019, 2019, 1-13.	1.2	9
13	Issues with the surgical treatment of antiresorptive agentâ€related osteonecrosis of the jaws. Oral Diseases, 2018, 24, 52-56.	1.5	8
14	Characterization of spontaneous spheroids from oral mucosa-derived cells and their direct comparison with spheroids from skin-derived cells. Stem Cell Research and Therapy, 2019, 10, 184.	2.4	8
15	Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2021, 27, 253-263.	1.1	8
16	Intra-Bone Marrow Administration of Mesenchymal Stem/Stromal Cells Is a Promising Approach for Treating Osteoporosis. Stem Cells International, 2019, 2019, 1-10.	1.2	7
17	Alliin inhibits adipocyte differentiation by downregulating Akt expression: Implications for metabolic disease. Experimental and Therapeutic Medicine, 2021, 21, 563.	0.8	7
18	Clinical Outcome and 8-Year Follow-Up of Alveolar Bone Tissue Engineering for Severely Atrophic Alveolar Bone Using Autologous Bone Marrow Stromal Cells with Platelet-Rich Plasma and β-Tricalcium Phosphate Granules. Journal of Clinical Medicine, 2021, 10, 5231.	1.0	7

#	Article	IF	Citations
19	Transient Exposure to Hypoxic and Anoxic Oxygen Concentrations Promotes Either Osteogenic or Ligamentogenic Characteristics of PDL Cells. BioResearch Open Access, 2015, 4, 175-187.	2.6	6
20	Around $90\hat{A}^\circ$ Contact Angle of Dish Surface Is a Key Factor in Achieving Spontaneous Spheroid Formation. Tissue Engineering - Part C: Methods, 2018, 24, 578-584.	1.1	6
21	The Potential of Somatic Stem Cells for Alveolar Bone Tissue Engineering. International Journal of Oral-Medical Sciences, 2010, 9, 1-10.	0.2	5
22	Discontinuation of simvastatin leads to a rebound phenomenon and results in immediate periâ€implant bone loss. Clinical and Experimental Dental Research, 2016, 2, 65-72.	0.8	5
23	Effect of Cell Seeding Conditions on the Efficiency of In Vivo Bone Formation. International Journal of Oral and Maxillofacial Implants, 2016, 31, 232-239.	0.6	4
24	Tooth transplantation with a βâ€tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration. Oral Diseases, 2021, 27, 1226-1237.	1.5	4
25	Effect of TNF- $\hat{l}\pm$ and IL-6 on Compact Bone-Derived Cells. Tissue Engineering and Regenerative Medicine, 2021, 18, 441-451.	1.6	4
26	Effect of short-term betamethasone administration on the regeneration process of tissue-engineered bone. Histology and Histopathology, 2020, 35, 709-717.	0.5	3
27	Comparison of manual and automated cultures of bone marrow stromal cells for bone tissue engineering. Journal of Bioscience and Bioengineering, 2015, 120, 570-576.	1.1	2
28	A case of adenomatoid odontogenic tumor with unusual presentation extending from gingiva to periodontal space. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2018, 30, 533-537.	0.2	2
29	Tissue Engineering with Compact Bone-Derived Cell Spheroids Enables Bone Formation around Transplanted Tooth. Tissue Engineering and Regenerative Medicine, 2022, 19, 377.	1.6	2
30	Potential application of tissue engineering for the reconstruction of facial bones. Oral Diseases, 2017, 23, 689-691.	1.5	1
31	A case of Sweet's syndrome secondary to removal of infected mandibular titanium mesh and plate. Oral and Maxillofacial Surgery Cases, 2019, 5, 100104.	0.1	1
32	Characteristics of Clinical and Imaging Findings of Epidermoid Cysts under the Skin of the Mental Region. Journal of Hard Tissue Biology, 2017, 26, 305-308.	0.2	1
33	The intestinal blood flow in various pathophysiological states. Gastroenterologia Japonica, 1971, 6, 24-24.	0.4	0