

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275210/publications.pdf Version: 2024-02-01

ARTICLE IF CITATIONS Predictive Cruise Control Using High-Definition Map and Real Vehicle Implementation. IEEE 6.3 Transactions on Vehicular Technology, 2018, 67, 11377-11389. Detection and Identification of Cyber and Physical Attacks on Distribution Power Grids With PVs: An Online High-Dimensional Data-Driven Approach. IEEE Journal of Emerging and Selected Topics in Power 9 5.4 48 Electronics, 2022, 10, 1282-1291. A Review of Cyber–Physical Security for Photovoltaic Systems. IEEE Journal of Emerging and Selected 5.4 Topics in Power Electronics, 2022, 10, 4879-4901. On-line Optimal Control of the Gearshift Command for Multispeed Electric Vehicles. IEEE/ASME 4 5.8 44 Transactions on Mechatronics, 2017, 22, 1519-1530. Online Distributed IoT Security Monitoring With Multidimensional Streaming Big Data. IEEE Internet 8.7 of Things Journal, 2020, 7, 4387-4394. Systematic Assessment of Cyber-Physical Security of Energy Management System for Connected and 11.3 36 6 Automated Electric Vehicles. IEEE Transactions on Industrial Informatics, 2021, 17, 3335-3347. Cyberâ€"Physical Security of Powertrain Systems in Modern Electric Vehicles: Vulnerabilities, Challenges, and Future Visions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 4639-4657. 5.4 Adaptive Decision-Making for Automated Vehicles Under Roundabout Scenarios Using Optimization Embedded Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2021, 8 11.331 32, 5526-5538. Vulnerability Assessments of Electric Drive Systems Due to Sensor Data Integrity Attacks. IEEE Transactions on Industrial Informatics, 2020, 16, 3301-3310. 11.3 Deterministic Promotion Reinforcement Learning Applied to Longitudinal Velocity Control for 10 6.3 28 Automated Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 338-348. Design and Experimental Verification of Real-Time Nonlinear Predictive Controller for Improving the Stability of Production Vehicles. IEEE Transactions on Control Systems Technology, 2021, 29, 2206-2213. Self-Learning Optimal Cruise Control Based on Individual Car-Following Style. IEEE Transactions on 12 8.0 21 Intelligent Transportation Systems, 2021, 22, 6622-6633. Optimal car-following control for intelligent vehicles using online road-slope approximation 4.3 method. Science China Information Sciences, 2021, 64, 1 Hierarchical Energy-Efficient Control for CAVs at Multiple Signalized Intersections Considering 14 8.0 19 Queue Effects. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11643-11653. Cyber-Physical Security of Electric Vehicles With Four Motor Drives. IEEE Transactions on Power Electronics, 2021, 36, 4463-4477. Cyberattack Detection for Electric Vehicles Using Physics-Guided Machine Learning. IEEE Transactions 16 7.8 18 on Transportation Electrification, 2021, 7, 2010-2022. Cyber–Physical Security of Energy-Efficient Powertrain System in Hybrid Electric Vehicles Against Sophisticated Cyberattacks. IEEE Transactions on Transportation Electrification, 2021, 7, 636-648.

18 Impact Analysis of Data Integrity Attacks on Power Electronics and Electric Drives. , 2019, , .

14

Luli

#	Article	IF	CITATIONS
19	Cyber-physical security framework for Photovoltaic Farms. , 2020, , .		11
20	A Novel Trajectory Planning Method for Automated Vehicles Under Parameter Decision Framework. IEEE Access, 2019, 7, 88264-88274.	4.2	9
21	Data-Driven Cyber-Attack Detection for PV Farms via Time-Frequency Domain Features. IEEE Transactions on Smart Grid, 2022, 13, 1582-1597.	9.0	9
22	Coordinate Receding Horizon Control for the Power-Shift Process of Multispeed Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 1055-1059.	6.3	8
23	Attack-Resilient Lateral Stability Control for Four-Wheel-Driven EVs Considering Changed Driver Behavior Under Cyber Threats. IEEE Transactions on Transportation Electrification, 2022, 8, 1362-1375.	7.8	8
24	Energy-efficient longitudinal driving strategy for intelligent vehicles on urban roads. Science China Information Sciences, 2019, 62, 1.	4.3	6
25	Optimal control methods in intelligent vehicles. Journal of Control and Decision, 2017, 4, 32-56.	1.6	5
26	Attack-Resilient Lateral Stability Control for Autonomous In-Wheel-Motor-Driven Electric Vehicles. , 2021, , .		4
27	Fast Detection for Cyber Threats in Electric Vehicle Traction Motor Drives. IEEE Transactions on Transportation Electrification, 2022, 8, 767-777.	7.8	3
28	Detection and Diagnosis of Long-Term Cyber-Attacks for Predictive Energy Management System in HEVs. , 2021, , .		3
29	Model-based Cyber-attack Detection for Voltage Source Converters in Island Microgrids. , 2021, , .		3
30	Physics-Based Attack Detection for Traction Motor Drives in Electric Vehicles Using Random Forest. , 2021, , .		2
31	Predictive Energy Management for Dual-Motor BEVs Considering Temperature-Dependent Traction Inverter Loss. IEEE Transactions on Transportation Electrification, 2022, 8, 1501-1515.	7.8	2
32	Hardware-in-the-Loop Testbed for Cyber-Physical Security of Photovoltaic Farms. , 2021, , .		1
33	Real-time energy-efficient anticipative driving control of connected and automated hybrid electric vehicles. Control Theory and Technology, 2022, 20, 210-220.	1.6	1