
Anne Poliard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275189/publications.pdf Version: 2024-02-01

ANNE POLIARD

#	Article	IF	CITATIONS
1	Inflammatory and immunological aspects of dental pulp repair. Pharmacological Research, 2008, 58, 137-147.	7.1	195
2	Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion. Stem Cells Translational Medicine, 2016, 5, 392-404.	3.3	88
3	The Impact of Bioactive Molecules to Stimulate Tooth Repair and Regeneration as Part of Restorative Dentistry. Dental Clinics of North America, 2006, 50, 277-298.	1.8	64
4	MEPE-Derived ASARM Peptide Inhibits Odontogenic Differentiation of Dental Pulp Stem Cells and Impairs Mineralization in Tooth Models of X-Linked Hypophosphatemia. PLoS ONE, 2013, 8, e56749.	2.5	61
5	Priming Dental Pulp Stem Cells from Human Exfoliated Deciduous Teeth with Fibroblast Growth Factor-2 Enhances Mineralization Within Tissue-Engineered Constructs Implanted in Craniofacial Bone Defects. Stem Cells Translational Medicine, 2019, 8, 844-857.	3.3	56
6	Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biology, 2016, 52-54, 284-300.	3.6	52
7	<i>DMP1</i> C-terminal mutant mice recapture the human ARHR tooth phenotype. Journal of Bone and Mineral Research, 2010, 25, 2155-2164.	2.8	29
8	Serotonergic 5-HT2B Receptor Controls Tissue-nonspecific Alkaline Phosphatase Activity in Osteoblasts via Eicosanoids and Phosphatidylinositol-specific Phospholipase C. Journal of Biological Chemistry, 2010, 285, 26066-26073.	3.4	29
9	Tooth Engineering: Searching for Dental Mesenchymal Cells Sources. Frontiers in Physiology, 2011, 2, 7.	2.8	27
10	Dual Role of the Trps1 Transcription Factor in Dentin Mineralization. Journal of Biological Chemistry, 2014, 289, 27481-27493.	3.4	27
11	Pulp Cell Tracking by Radionuclide Imaging for Dental Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 188-197.	2.1	25
12	Paracrine and Autocrine Signals Promoting Full Chondrogenic Differentiation of a Mesoblastic Cell Line. Journal of Bone and Mineral Research, 2004, 19, 100-110.	2.8	24
13	Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair. Acta Biomaterialia, 2018, 82, 111-121.	8.3	22
14	Mouse <i>>Wnt1-CRE</i> -Rosa <i>Tomato</i> Dental Pulp Stem Cells Directly Contribute to the Calvarial Bone Regeneration Process. Stem Cells, 2019, 37, 701-711.	3.2	22
15	Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials, 2021, 268, 120594.	11.4	22
16	Early <i>in vivo and in vitro</i> effects of amelogenin gene splice products on pulp cells. European Journal of Oral Sciences, 2006, 114, 232-238.	1.5	20
17	Short-term effects of amelogenin gene splice products A+4 and A-4 implanted in the exposed rat molar pulp. Head & Face Medicine, 2007, 3, 40.	2.1	16
18	Autoregulatory loop of Msx1 expression involving its antisense transcripts. Journal of Cellular Physiology, 2009, 220, 303-310.	4.1	16

Anne Poliard

#	Article	IF	CITATIONS
19	Phosphorylated and Non-phosphorylated Leucine Rich Amelogenin Peptide Differentially Affect Ameloblast Mineralization. Frontiers in Physiology, 2018, 9, 55.	2.8	16
20	EMMPRIN/CD147 deficiency disturbs ameloblast–odontoblast cross-talk and delays enamel mineralization. Bone, 2014, 66, 256-266.	2.9	12
21	Activation of alpha-fetoprotein synthesis in rat hepatoma cells with reduced sensitivity to dexamethasone. Differentiation, 1986, 32, 148-156.	1.9	11
22	Coexistence of expressed and non-expressed α-fetoprotein genes in somatic cell hybrids. Experimental Cell Research, 1983, 146, 224-229.	2.6	9
23	FasL Modulates Expression of Mmp2 in Osteoblasts. Frontiers in Physiology, 2018, 9, 1314.	2.8	8
24	Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomaterialia, 2022, 140, 178-189.	8.3	7
25	Growthâ€dependent phenotype in FasL â€deficient mandibular/alveolar bone. Journal of Anatomy, 2019, 235, 256-261.	1.5	5
26	Tooth Organ Engineering: Biological Constraints Specifying Experimental Approaches. , 0, , .		5
27	Dental pulp stem cells as a promising model to study imprinting diseases. International Journal of Oral Science, 2022, 14, 19.	8.6	5
28	The phenotype of triparental hepatoma cell hybrids depends on the fusion sequence used to generate them. Experimental Cell Research, 1981, 133, 213-225.	2.6	4
29	An In Vivo Model for Short-Term Evaluation of the Implantation Effects of Biomolecules or Stem Cells in the Dental Pulp. Open Dentistry Journal, 2008, 2, 67-72.	0.5	3
30	Caspase-12 Is Present During Craniofacial Development and Participates in Regulation of Osteogenic Markers. Frontiers in Cell and Developmental Biology, 2020, 8, 589136.	3.7	2
31	Bioactive Molecules Stimulate Tooth Repair and Regeneration. Journal of Hard Tissue Biology, 2006, 15, 36-45.	0.4	2
32	A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells and Development, 2017, 26, 1682-1694.	2.1	1
33	In Vivo Effects of Amelogenins on Reparative Dentin Formation. , 2012, , 174-190.		1
34	Nucleoside uptake in normal and cystic fibrosis fibroblasts in vitro. Clinica Chimica Acta, 1980, 102, 11-18.	1.1	0
35	Combining Sclerostin Neutralization with Tissue Engineering: ÂAn Improved Strategy for Craniofacial Bone Repair. SSRN Electronic Journal, 0, , .	0.4	0
36	MEPE-derived ASARM peptide impairs mineralization in tooth models of X-linked hypophosphatemia. Bone Abstracts, 0, , .	0.0	0

#	Article	IF	CITATIONS
37	Fas ligand in formation of hard tissues. Bone Abstracts, 0, , .	0.0	0