List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275131/publications.pdf Version: 2024-02-01

ΥΠΝ ΠΑΙ

#	Article	IF	CITATIONS
1	Decoding DNA methylation in epigenetics of multiple myeloma. Blood Reviews, 2022, 51, 100872.	2.8	12
2	Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2022, 9, 868788.	1.1	16
3	Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Frontiers in Oncology, 2022, 12, 859455.	1.3	2
4	IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB– and caspase-8–dependent mechanisms. Blood Advances, 2021, 5, 3776-3788.	2.5	10
5	Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis. European Heart Journal Open, 2021, 1, .	0.9	9
6	Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Materials Today Bio, 2021, 12, 100139.	2.6	32
7	The mechanisms and therapeutic targets of ferroptosis in cancer. Expert Opinion on Therapeutic Targets, 2021, 25, 965-986.	1.5	18
8	Preclinical evaluation of a regimen combining chidamide and ABT-199 in acute myeloid leukemia. Cell Death and Disease, 2020, 11, 778.	2.7	17
9	Pegfilgrastim improves the outcomes of mobilization and engraftment in autologous hematopoietic stem cell transplantation for the treatment of multiple myeloma. Annals of Hematology, 2020, 99, 1331-1339.	0.8	7
10	Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clinical Epigenetics, 2019, 11, 137.	1.8	37
11	The IAP antagonist birinapant potentiates bortezomib anti-myeloma activity in vitro and in vivo. Journal of Hematology and Oncology, 2019, 12, 25.	6.9	19
12	Cell cycle regulation and hematologic malignancies. Blood Science, 2019, 1, 34-43.	0.4	16
13	Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNF1± and angiogenic VEGF. Aging, 2019, 11, 328-349.	1.4	26
14	A Multi-Center Epidemiological and Prognostic Analysis of Cytogenetic Abnormalities in a Cohort of 1015 Chinese Patients with Newly-Diagnosed Multiple Myeloma. Blood, 2019, 134, 3094-3094.	0.6	1
15	IRF4 Is Reciprocally Dysregulated Via NF-Κb-Dependent Expression and Loss-of-Function Mutations in Multiple Myeloma. Blood, 2019, 134, 687-687.	0.6	0
16	High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis, 2018, 21, 381-394.	3.7	39
17	Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. British Journal of Cancer, 2018, 118, 388-397.	2.9	23
18	Detection of Urothelial Bladder Carcinoma via Microfluidic Immunoassay and Single-Cell DNA Copy-Number Alteration Analysis of Captured Urinary-Exfoliated Tumor Cells. Cancer Research, 2018, 78, 4073-4085.	0.4	34

#	Article	IF	CITATIONS
19	<i><scp>ARNT</scp></i> / <scp>HIF</scp> â€lî² links highâ€risk 1q21 gain and microenvironmental hypoxia to drug resistance and poor prognosis in multiple myeloma. Cancer Medicine, 2018, 7, 3899-3911.	1.3	25
20	High COX-2 expression contributes to a poor prognosis through the inhibition of chemotherapy-induced senescence in nasopharyngeal carcinoma. International Journal of Oncology, 2018, 53, 1138-1148.	1.4	18
21	The Lysine-Specific Demethylase KDM4A/JMJD2A Acts As a Tumor Suppressor in Multiple Myeloma. Blood, 2018, 132, 191-191.	0.6	4
22	Nonlinear response surface in the study of interaction analysis of three combination drugs. Biometrical Journal, 2017, 59, 9-24.	0.6	2
23	Targeting the NF-κb-Dependent HIF-1β Pathway Reprograms Macrophage Polarization Induced By Oxidized LDL. Blood, 2017, 130, 993-993.	0.6	2
24	Characterization of IFNÎ ³ -producing natural killer cells induced by cytomegalovirus reactivation after haploidentical hematopoietic stem cell transplantation. Oncotarget, 2017, 8, 51-63.	0.8	31
25	Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL. Oncotarget, 2017, 8, 114442-114456.	0.8	20
26	Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget, 2017, 8, 59476-59491.	0.8	21
27	XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of llºBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget, 2016, 7, 78896-78909.	0.8	75
28	Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. Journal of Hematology and Oncology, 2016, 9, 73.	6.9	62
29	The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood, 2016, 127, 2219-2230.	0.6	42
30	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
31	Abstract 3020: Targeting both canonical and non-canonical NF-kB pathways by the IAP antagonist birinapant potentiates bortezomib anti-myeloma activity. Cancer Research, 2016, 76, 3020-3020.	0.4	1
32	Novel mechanisms of action for immunomodulatory drugs (IMiDs) against multiple myeloma: from a tragedy to a therapy. International Journal of Hematology & Therapy, 2016, 2, 1-6.	0.1	2
33	Clarithromycin Interacts with Lenalidomide in the Combination Regimen Bird and Overcomes Drug Resistance in Multiple Myeloma. Blood, 2016, 128, 2125-2125.	0.6	0
34	Combination Therapy with Bortezomib or Carfilzomib and Selinexor Induces Nuclear Localization of Ikbα and Overcomes Acquired Proteasome Inhibitor Resistance in Human Multiple Myeloma. Blood, 2016, 128, 3299-3299.	0.6	0
35	LDL suppresses angiogenesis through disruption of the HIF pathway via NF-κB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget, 2015, 6, 30251-30262.	0.8	15
36	Anti-tumor activity of the proteasome inhibitor BSc2118 against human multiple myeloma. Cancer Letters, 2015, 366, 173-181.	3.2	7

#	Article	IF	CITATIONS
37	BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance. Autophagy, 2015, 11, 416-418.	4.3	45
38	Neurotensin promotes the progression of malignant glioma through NTSR1 and impacts the prognosis of glioma patients. Molecular Cancer, 2015, 14, 21.	7.9	33
39	Programmed Death-Ligand 1 Expression Predicts Tyrosine Kinase Inhibitor Response and Better Prognosis in a Cohort of Patients With Epidermal Growth Factor Receptor Mutation-Positive Lung Adenocarcinoma. Clinical Lung Cancer, 2015, 16, e25-e35.	1.1	100
40	Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach. Experimental Hematology, 2015, 43, 89-99.	0.2	44
41	Next Generation XPO1 Inhibitor KPT-8602 for the Treatment of Drug-Resistant Multiple Myeloma. Blood, 2015, 126, 1818-1818.	0.6	5
42	Combination Therapy of Selinexor with Bortezomib or Carfilzomib Overcomes Drug Resistance to Proteasome Inhibitors (PI) in Human Multiple Myeloma. Blood, 2015, 126, 3048-3048.	0.6	2
43	Abstract B15: Targeting SQSTM1/p62 induces cargo-loading failure and converts autophagy to apoptosis via NBK/Bik in human multiple myeloma cells , 2015, , .		0
44	Abstract LB-258: The NAE inhibitor pevonedistat (MLN4924) interacts with the HDAC inhibitor belinostat via disruption of the intra-S checkpoint and both HR and NHEJ DNA repair in AML cells. , 2015, , .		0
45	A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood, 2014, 124, 2687-2697.	0.6	82
46	Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. , 2014, 143, 323-336.		219
47	107. Cytokine, 2014, 70, 53.	1.4	0
48	Targeting SQSTM1/p62 Induces Cargo Loading Failure and Converts Autophagy to Apoptosis via NBK/Bik. Molecular and Cellular Biology, 2014, 34, 3435-3449.	1.1	63
49	Synergism of ursolic acid derivative US597 with 2-deoxy-D-glucose to preferentially induce tumor cell death by dual-targeting of apoptosis and glycolysis. Scientific Reports, 2014, 4, 5006.	1.6	62
50	Melphalan and XPO1 Inhibitor Combination Therapy for the Treatment of Multiple Myeloma. Blood, 2014, 124, 2084-2084.	0.6	1
51	HDAC Inhibitors Reciprocally Interacts the Wee1 Inhibitor AZD1775 to Abrogate Both the G1/S and G2/M Checkpoints Via Chk1-Related cdc2/Cdk1 Threonine 14 Dephosphorylation in AML Cells. Blood, 2014, 124, 997-997.	0.6	1
52	Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells. PLoS ONE, 2014, 9, e89064.	1.1	27
53	Inhibition of the MDM2 E3 Ligase Induces Apoptosis and Autophagy in Wild-Type and Mutant p53 Models of Multiple Myeloma, and Acts Synergistically with ABT-737. PLoS ONE, 2014, 9, e103015.	1.1	26
54	Abstract 1772: Overcoming drug-resistance in multiple myeloma by CRM1 inhibitor combination therapy. , 2014, , .		0

#	Article	IF	CITATIONS
55	Abstract 4556: A therapeutic strategy combining the Wee1 inhibitor MK1775 with HDAC inhibitors targets both p53 wild-type or mutant AML cells. , 2014, , .		0
56	Abstract 4600: P-TEFb is a therapeutic target in human bortezomib-resistant multiple myeloma cells. , 2014, , .		0
57	Bcl-2 Antagonism Potentiates MEK1/2/Chk1 Inhibitor Lethality in Multiple Myeloma Cells Overexpressing Bcl-2 through a Stat3-Dependent Mechanism. Blood, 2014, 124, 4763-4763.	0.6	0
58	The Novel Chk1 Inhibitor MK-8776 Sensitizes Human Leukemia Cells to HDAC Inhibitors by Targeting the Intra-S Checkpoint and DNA Replication and Repair. Molecular Cancer Therapeutics, 2013, 12, 878-889.	1.9	51
59	PARP and CHK inhibitors interact to cause DNA damage and cell death in mammary carcinoma cells. Cancer Biology and Therapy, 2013, 14, 458-465.	1.5	53
60	Targeting the Cell Cycle for Cancer Treatment and Neuroprotection. , 2013, , 591-654.		0
61	Abstract 3390: Simultaneous Chk1 and MEK1/2 inhibition circumvents Mcl-1-mediated anti-apoptotic functions and bortezomib resistance in human multiple myeloma cells , 2013, , .		0
62	Abstract 3420: The novel Chk1 inhibitor MK8776 sensitizes AML cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair , 2013, , .		0
63	Abstract 3346: A20/TNFAIP3, a novel target of histone deacetylase inhibitor-induced NF-κB activation, functionally disables the extrinsic apoptotic pathway in human leukemia cells , 2013, , .		0
64	Bim-Targeting Therapy Circumvents Adaptive Bortezomib-Resistance In Myeloma Through a Novel Cross-Link Between Autophagy and Apoptosis. Blood, 2013, 122, 601-601.	0.6	1
65	Poly(ADP-ribose) Polymerase 1 Modulates the Lethality of CHK1 Inhibitors in Mammary Tumors. Molecular Pharmacology, 2012, 82, 322-332.	1.0	31
66	Enhancing CHK1 inhibitor lethality in glioblastoma. Cancer Biology and Therapy, 2012, 13, 379-388.	1.5	35
67	CDK Inhibitors Upregulate BH3-Only Proteins to Sensitize Human Myeloma Cells to BH3 Mimetic Therapies. Cancer Research, 2012, 72, 4225-4237.	0.4	51
68	A focus on the preclinical development and clinical status of the histone deacetylase inhibitor, romidepsin (depsipeptide, lstodax [®]). Epigenomics, 2012, 4, 571-589.	1.0	39
69	Histone Deacetylase Inhibitors and Rational Combination Therapies. Advances in Cancer Research, 2012, 116, 199-237.	1.9	39
70	Resveratrol Sensitizes Acute Myelogenous Leukemia Cells to Histone Deacetylase Inhibitors through Reactive Oxygen Species-Mediated Activation of the Extrinsic Apoptotic Pathway. Molecular Pharmacology, 2012, 82, 1030-1041.	1.0	36
71	LBH-589 (panobinostat) potentiates fludarabine anti-leukemic activity through a JNK- and XIAP-dependent mechanism. Leukemia Research, 2012, 36, 491-498.	0.4	12
72	The Rheumatoid Arthritis Drug Auranofin Has Significant in Vitro Activity in MCL and DLCL and Is Synergistic with a Glutathione Depleting Agent. Blood, 2012, 120, 1658-1658.	0.6	2

#	Article	IF	CITATIONS
73	Abstract 4667: Simultaneous Chk1 and MEK1/2 inhibition circumvents Mcl-1 anti-apoptotic function and bortezomib resistance in human multiple myeloma cells. , 2012, , .		0
74	Abstract 4706: Resveratrol potentiates the lethality of HDAC inhibitors in acute myelogenous leukemia cells. , 2012, , .		0
75	Disruption of Src function potentiates Chk1-inhibitor–induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood, 2011, 117, 1947-1957.	0.6	29
76	Cytokinetically quiescent (GO/G1) human multiple myeloma cells are susceptible to simultaneous inhibition of Chk1 and MEK1/2. Blood, 2011, 118, 5189-5200.	0.6	42
77	Bortezomib interacts synergistically with belinostat in human acute myeloid leukaemia and acute lymphoblastic leukaemia cells in association with perturbations in NFâ€̂PB and Bim. British Journal of Haematology, 2011, 153, 222-235.	1.2	56
78	HDAC Inhibitors Potentiate the Activity of the BCR/ABL Kinase Inhibitor KW-2449 in Imatinib-Sensitive or -Resistant BCR/ABL+ Leukemia Cells <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2011, 17, 3219-3232.	3.2	72
79	Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death. Cancer Biology and Therapy, 2011, 12, 215-228.	1.5	15
80	Disruption of lκB Kinase (IKK)-mediated RelA Serine 536 Phosphorylation Sensitizes Human Multiple Myeloma Cells to Histone Deacetylase (HDAC) Inhibitors. Journal of Biological Chemistry, 2011, 286, 34036-34050.	1.6	35
81	The Role of Tyk2 in Regulation of Breast Cancer Growth. Journal of Interferon and Cytokine Research, 2011, 31, 671-677.	0.5	13
82	Methods to Study Cancer Therapeutic Drugs That Target Cell Cycle Checkpoints. Methods in Molecular Biology, 2011, 782, 257-304.	0.4	8
83	CHK1 Inhibitors in Combination Chemotherapy: Thinking Beyond the Cell Cycle. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 133-140.	3.4	82
84	Rational Combination of Targeted Agents to Overcome Cancer Cell Resistance. , 2011, , 171-195.		1
85	Abstract 5367: Simultaneous inhibition of Chk1 and MEK1/2 targets non-proliferating multiple myeloma cells. , 2011, , .		0
86	Abstract 2572: The histone deacetylase inhibitors (HDACIs) vorinostat and entinostat interact synergistically with the Bcr/Abl, FLT3, and aurora kinase inhibitor KW-2449 to induce apoptosis in imatininb mesylate (IM)-sensitive and -resistant CML and ALL cellsin vitroandin vivo. , 2011, , .		0
87	The NF (Nuclear factor)‵B inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1â€dependent apoptosis in human acute myeloid leukaemia cells. British Journal of Haematology, 2010, 151, 70-83.	1.2	62
88	Targeting Chk1 in the replicative stress response. Cell Cycle, 2010, 9, 1025-1030.	1.3	19
89	New Insights into Checkpoint Kinase 1 in the DNA Damage Response Signaling Network. Clinical Cancer Research, 2010, 16, 376-383.	3.2	389
90	Bortezomib Interacts Synergistically with Belinostat to Induce Apoptosis In Human Acute Myeloid and Lymphoid Leukemia Cells. Blood, 2010, 116, 3266-3266.	0.6	1

#	Article	IF	CITATIONS
91	Bim Upregulation by Histone Deacetylase Inhibitors Mediates Interactions with the Bcl-2 Antagonist ABT-737: Evidence for Distinct Roles for Bcl-2, Bcl-x _L , and Mcl-1. Molecular and Cellular Biology, 2009, 29, 6149-6169.	1.1	123
92	Targeting CDK9 Dramatically Potentiates ABT-737-Induced Apoptosis in Human Multiple Myeloma Cells through a Bim-Dependent Mechanism Blood, 2009, 114, 297-297.	0.6	3
93	Transient exposure of carcinoma cells to RAS/MEK inhibitors and UCN-01 causes cell death <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2008, 7, 616-629.	1.9	18
94	Interactions between Bortezomib and Romidepsin and Belinostat in Chronic Lymphocytic Leukemia Cells. Clinical Cancer Research, 2008, 14, 549-558.	3.2	86
95	Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood, 2008, 112, 793-804.	0.6	61
96	Interruption of the Ras/MEK/ERK signaling cascade enhances Chk1 inhibitor–induced DNA damage in vitro and in vivo in human multiple myeloma cells. Blood, 2008, 112, 2439-2449.	0.6	91
97	CDK Inhibitors in Multiple Myeloma. , 2008, , 331-363.		1
98	Mcl-1 Down-regulation Potentiates ABT-737 Lethality by Cooperatively Inducing Bak Activation and Bax Translocation. Cancer Research, 2007, 67, 782-791.	0.4	366
99	Synergistic Interactions between Vorinostat and Sorafenib in Chronic Myelogenous Leukemia Cells Involve Mcl-1 and p21CIP1 Down-Regulation. Clinical Cancer Research, 2007, 13, 4280-4290.	3.2	63
100	Targeting Multiple Arms of the Apoptotic Regulatory Machinery: Figure 1 Cancer Research, 2007, 67, 2908-2911.	0.4	104
101	Statins synergistically potentiate 7-hydroxystaurosporine (UCN-01) lethality in human leukemia and myeloma cells by disrupting Ras farnesylation and activation. Blood, 2007, 109, 4415-4423.	0.6	66
102	MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood, 2007, 110, 2092-2101.	0.6	43
103	Vorinostat Synergistically Potentiates MK-0457 Lethality in Chronic Myelogenous Leukemia (CML) Cells Sensitive and Resistant to Imatinib Mesylate Blood, 2007, 110, 1041-1041.	0.6	3
104	Cyclin D1 Overexpression Increases the Susceptibility of Human U266 Myeloma Cells to CDK Inhibitors through a Process Involving p130-, p107- and E2F-Dependent S-Phase Entry. Cell Cycle, 2006, 5, 437-446.	1.3	21
105	CDK inhibitor targets—A hit or miss proposition?: Cyclin-dependent kinase inhibitors kill tumor cells by downregulation of antiapoptotic proteins. Cancer Biology and Therapy, 2006, 5, 171-173.	1.5	6
106	Dissecting the Roles of Checkpoint Kinase 1/CDC2 and Mitogen-Activated Protein Kinase Kinase 1/2/Extracellular Signal-Regulated Kinase 1/2 in Relation to 7-Hydroxystaurosporine-Induced Apoptosis in Human Multiple Myeloma Cells. Molecular Pharmacology, 2006, 70, 1965-1973.	1.0	12
107	Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood, 2005, 105, 1706-1716.	0.6	65
108	The Farnesyltransferase Inhibitor L744832 Potentiates UCN-01–Induced Apoptosis in Human Multiple Myeloma Cells. Clinical Cancer Research, 2005, 11, 4589-4600.	3.2	30

#	Article	IF	CITATIONS
109	Cotreatment with Suberanoylanilide Hydroxamic Acid and 17-Allylamino 17-demethoxygeldanamycin Synergistically Induces Apoptosis in Bcr-Abl+Cells Sensitive and Resistant to STI571 (Imatinib Mesylate) in Association with Down-Regulation of Bcr-Abl, Abrogation of Signal Transducer and Activator of Transcription 5 Activity, and Bax Conformational Change. Molecular Pharmacology, 2005, 67, 1166-1176.	1.0	80
110	Transient exposure of mammary tumors to PD184352 and UCN-01 causes tumor cell death in vivo and prolonged suppression of tumor re-growth. Cancer Biology and Therapy, 2005, 4, 1275-1284.	1.5	20
111	Blockade of Histone Deacetylase Inhibitor-Induced RelA/p65 Acetylation and NF-κB Activation Potentiates Apoptosis in Leukemia Cells through a Process Mediated by Oxidative Damage, XIAP Downregulation, and c-Jun N-Terminal Kinase 1 Activation. Molecular and Cellular Biology, 2005, 25, 5429-5444.	1.1	237
112	Coadministration of Histone Deacetylase Inhibitors and Perifosine Synergistically Induces Apoptosis in Human Leukemia Cells through Akt and ERK1/2 Inactivation and the Generation of Ceramide and Reactive Oxygen Species. Cancer Research, 2005, 65, 2422-2432.	0.4	195
113	The Histone Deacetylase Inhibitor MS-275 Interacts Synergistically with Fludarabine to Induce Apoptosis in Human Leukemia Cells. Cancer Research, 2004, 64, 2590-2600.	0.4	141
114	Synergistic Induction of Oxidative Injury and Apoptosis in Human Multiple Myeloma Cells by the Proteasome Inhibitor Bortezomib and Histone Deacetylase Inhibitors. Clinical Cancer Research, 2004, 10, 3839-3852.	3.2	371
115	A Bcr/Abl-independent, Lyn-dependent Form of Imatinib Mesylate (STI-571) Resistance Is Associated with Altered Expression of Bcl-2. Journal of Biological Chemistry, 2004, 279, 34227-34239.	1.6	217
116	Contribution of Disruption of the Nuclear Factor-κB Pathway to Induction of Apoptosis in Human Leukemia Cells by Histone Deacetylase Inhibitors and Flavopiridol. Molecular Pharmacology, 2004, 66, 956-963.	1.0	54
117	Small molecule inhibitors targeting cyclin-dependent kinases as anticancer agents. Current Oncology Reports, 2004, 6, 123-130.	1.8	53
118	Interruption of the NF-κB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood, 2004, 103, 2761-2770.	0.6	104
119	Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood, 2004, 104, 509-518.	0.6	109
120	The small-molecule Bcl-2 inhibitor HA14-1 interacts synergistically with flavopiridol to induce mitochondrial injury and apoptosis in human myeloma cells through a free radical-dependent and Jun NH2-terminal kinase-dependent mechanism. Molecular Cancer Therapeutics, 2004, 3, 1513-24.	1.9	45
121	Enforced expression of the tumor suppressor p53 renders human leukemia cells (U937) more sensitive to 1-[β-d-arabinofuranosyl]cytosine (ara-C)-induced apoptosis. Biochemical Pharmacology, 2003, 65, 1997-2008.	2.0	8
122	Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-κB-dependent process. Oncogene, 2003, 22, 7108-7122.	2.6	136
123	Cyclin-dependent kinase inhibitors. Current Opinion in Pharmacology, 2003, 3, 362-370.	1.7	99
124	Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Promotes Mitochondrial Dysfunction and Apoptosis Induced by 7-Hydroxystaurosporine and Mitogen-Activated Protein Kinase Kinase Inhibitors in Human Leukemia Cells That Ectopically Express Bcl-2 and Bcl-xL. Molecular Pharmacology, 2003, 64, 1402-1409.	1.0	25
125	An Intact NF-kappaB Pathway is Required for Histone Deacetylase Inhibitor Induced G1 Arrest and Maturation in U937 Human Myeloid Leukemia Cells. Cell Cycle, 2003, 2, 465-470.	1.3	31
126	The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Research, 2003, 63, 1822-33.	0.4	79

#	Article	IF	CITATIONS
127	An intact NF-kappaB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle, 2003, 2, 467-72.	1.3	20
128	Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Research, 2003, 63, 8420-7.	0.4	109
129	Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Molecular Cancer Therapeutics, 2003, 2, 1273-84.	1.9	181
130	Bryostatin 1 Increases 1-β-d-Arabinofuranosylcytosine-Induced CytochromecRelease and Apoptosis in Human Leukemia Cells Ectopically Expressing Bcl-xL. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 568-577.	1.3	26
131	Coadministration of UCN-01 with MEK1/2 Inhibitors Potently Induces Apoptosis in. Cancer Biology and Therapy, 2002, 1, 674-682.	1.5	22
132	Loss of the BCL-2 Phosphorylation Loop Domain Is Required to Protect Human Myeloid Leukemia Cells from Flavopiridol-Mediated Mitochondrial Damage and Apoptosis. Cancer Biology and Therapy, 2002, 1, 136-144.	1.5	17
133	Inhibitors of MEK1/2 Interact with UCN-01 to Induce Apoptosis and Reduce Colony Formation in Mammary and Prostate Carcinoma Cells. Cancer Biology and Therapy, 2002, 1, 243-253.	1.5	45
134	Induction of Apoptosis in Human Leukemia Cells by the CDK1 Inhibitor. Cell Cycle, 2002, 1, 128-137.	1.3	23
135	Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6–independent mechanism. Blood, 2002, 100, 3333-3343.	0.6	96
136	The Histone Deacetylase Inhibitor Sodium Butyrate Interacts Synergistically with Phorbol Myristate Acetate (PMA) to Induce Mitochondrial Damage and Apoptosis in Human Myeloid Leukemia Cells through a Tumor Necrosis Factor-α-Mediated Process. Experimental Cell Research, 2002, 277, 31-47.	1.2	52
137	Induction of apoptosis in human leukemia cells by the CDK1 inhibitor CGP74514A. Cell Cycle, 2002, 1, 143-52	1.3	13