Daniel Gioeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8275019/publications.pdf

Version: 2024-02-01

186265 223800 2,962 47 28 46 h-index citations g-index papers 49 49 49 3893 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Androgen Receptor Phosphorylation. Journal of Biological Chemistry, 2002, 277, 29304-29314.	3.4	299
2	Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype. PLoS ONE, 2010, 5, e12905.	2.5	285
3	Stress Kinase Signaling Regulates Androgen Receptor Phosphorylation, Transcription, and Localization. Molecular Endocrinology, 2006, 20, 503-515.	3.7	163
4	Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Research, 2003, 63, 1981-9.	0.9	157
5	FKBP51 Promotes Assembly of the Hsp90 Chaperone Complex and Regulates Androgen Receptor Signaling in Prostate Cancer Cells. Molecular and Cellular Biology, 2010, 30, 1243-1253.	2.3	152
6	Ras signaling in prostate cancer progression. Journal of Cellular Biochemistry, 2004, 91, 13-25.	2.6	146
7	CDK9 Regulates AR Promoter Selectivity and Cell Growth through Serine 81 Phosphorylation. Molecular Endocrinology, 2010, 24, 2267-2280.	3.7	119
8	Post-translational modification of the androgen receptor. Molecular and Cellular Endocrinology, 2012, 352, 70-78.	3.2	115
9	Integration of Rapid Signaling Events with Steroid Hormone Receptor Action in Breast and Prostate Cancer. Annual Review of Physiology, 2007, 69, 171-199.	13.1	112
10	Androgen receptor phosphorylation: biological context and functional consequences. Endocrine-Related Cancer, 2014, 21, T131-T145.	3.1	105
11	Signal transduction in prostate cancer progression. Clinical Science, 2005, 108, 293-308.	4.3	103
12	Receptor for Activated C Kinase 1 (RACK1) and Src Regulate the Tyrosine Phosphorylation and Function of the Androgen Receptor. Cancer Research, 2006, 66, 11047-11054.	0.9	103
13	SUMO-Specific Protease 1 (SENP1) Reverses the Hormone-Augmented SUMOylation of Androgen Receptor and Modulates Gene Responses in Prostate Cancer Cells. Molecular Endocrinology, 2009, 23, 292-307.	3.7	93
14	The Androgen Receptor Acetylation Site Regulates cAMP and AKT but Not ERK-induced Activity. Journal of Biological Chemistry, 2004, 279, 29436-29449.	3.4	74
15	Attenuation of Ras signaling restores androgen sensitivity to hormone-refractory C4-2 prostate cancer cells. Cancer Research, 2003, 63, 1975-80.	0.9	66
16	Compensatory Pathways Induced by MEK Inhibition Are Effective Drug Targets for Combination Therapy against Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2011, 10, 1581-1590.	4.1	63
17	Transient, Ligand-Dependent Arrest of the Androgen Receptor in Subnuclear Foci Alters Phosphorylation and Coactivator Interactions. Molecular Endocrinology, 2004, 18, 834-850.	3.7	62
18	Simian Virus 40 Small t Antigen Mediates Conformation-Dependent Transfer of Protein Phosphatase 2A onto the Androgen Receptor. Molecular and Cellular Biology, 2005, 25, 1298-1308.	2.3	61

#	Article	IF	Citations
19	Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMedicine, 2016, 10, 85-100.	6.1	56
20	The Neuroendocrine-Derived Peptide Parathyroid Hormone–Related Protein Promotes Prostate Cancer Cell Growth by Stabilizing the Androgen Receptor. Cancer Research, 2009, 69, 7402-7411.	0.9	54
21	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	1.2	52
22	Identification of Kinases Regulating Prostate Cancer Cell Growth Using an RNAi Phenotypic Screen. PLoS ONE, 2012, 7, e38950.	2.5	51
23	Combinatorial drug screening identifies compensatory pathway interactions and adaptive resistance mechanisms. Oncotarget, 2013, 4, 622-635.	1.8	44
24	The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocrine-Related Cancer, 2014, 21, R395-R407.	3.1	34
25	Synthetic Lethal Screening with Small-Molecule Inhibitors Provides a Pathway to Rational Combination Therapies for Melanoma. Molecular Cancer Therapeutics, 2012, 11, 2505-2515.	4.1	32
26	$\hat{l}\pm v\hat{l}^2$ 6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Research, 2016, 76, 5163-5174.	0.9	32
27	Subcellular Localization Modulates Activation Function 1 Domain Phosphorylation in the Androgen Receptor. Molecular Endocrinology, 2007, 21, 2071-2084.	3.7	31
28	Cell-cycle-dependent regulation of androgen receptor function. Endocrine-Related Cancer, 2015, 22, 249-264.	3.1	30
29	Activation of the DNA-dependent Protein Kinase Stimulates Nuclear Export of the Androgen Receptor in Vitro. Journal of Biological Chemistry, 2008, 283, 10568-10580.	3.4	26
30	Rap2 regulates androgen sensitivity in human prostate cancer cells. Prostate, 2007, 67, 1590-1599.	2.3	25
31	Preventing the Androgen Receptor N/C Interaction Delays Disease Onset in a Mouse Model of SBMA. Cell Reports, 2015, 13, 2312-2323.	6.4	25
32	Development of a multicellular pancreatic tumor microenvironment system using patient-derived tumor cells. Lab on A Chip, 2019, 19, 1193-1204.	6.0	25
33	A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene, 2021, 40, 1106-1117.	5.9	24
34	Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth. Cancer Research, 2015, 75, 5093-5105.	0.9	20
35	Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas. Oncotarget, 2016, 7, 2734-2753.	1.8	19
36	Molecular Imaging of Prostate Cancer Targeting CD46 Using ImmunoPET. Clinical Cancer Research, 2021, 27, 1305-1315.	7.0	18

#	Article	IF	CITATIONS
37	The promise of novel androgen receptor antagonists. Cell Cycle, 2010, 9, 440-449.	2.6	13
38	Role of the runtâ€related transcription factor (RUNX) family in prostate cancer. FEBS Journal, 2021, 288, 6112-6126.	4.7	12
39	Discovery of a novel long noncoding RNA overlapping the LCK gene that regulates prostate cancer cell growth. Molecular Cancer, 2019, 18, 113.	19.2	10
40	Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma. PLoS ONE, 2015, 10, e0138210.	2.5	9
41	PRAS40 Phosphorylation Correlates with Insulin-Like Growth Factor-1 Receptor-Induced Resistance to Epidermal Growth Factor Receptor Inhibition in Head and Neck Cancer Cells. Molecular Cancer Research, 2020, 18, 1392-1401.	3.4	9
42	IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Scientific Reports, 2021, 11, 10826.	3.3	9
43	p70S6 kinase is a critical node that integrates HER-family and PI3 kinase signaling networks. Cellular Signalling, 2014, 26, 1627-1635.	3.6	8
44	Immunostaining for activated extracellular signal-regulated kinases in cells and tissue. Methods in Enzymology, 2001, 332, 343-353.	1.0	7
45	Validation of a multicellular tumor microenvironment system for modeling patient tumor biology and drug response. Scientific Reports, 2021, 11, 5535.	3.3	4
46	AR phosphorylation and CHK2 kinase activity regulates IR-stabilized AR–CHK2 interaction and prostate cancer survival. ELife, 2020, 9, .	6.0	4
47	Signal Transduction by the Ras–MAP Kinase Pathway in Prostate Cancer Progression. , 2008, , 223-256.		1