Carolyn D Ruppel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	US Atlantic Margin Gas Hydrates. , 2022, , 287-302.		2
2	Estimating the Impact of Seep Methane Oxidation on Ocean pH and Dissolved Inorganic Radiocarbon Along the U.S. Midâ€Atlantic Bight. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	1.3	13
3	Elevated levels of radiocarbon in methane dissolved in seawater reveal likely local contamination from nuclear powered vessels. Science of the Total Environment, 2021, 806, 150456.	3.9	1
4	Hydrate Formation on Marine Seep Bubbles and the Implications for Water Column Methane Dissolution. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017363.	1.0	14
5	Surface Methane Concentrations Along the Midâ€Atlantic Bight Driven by Aerobic Subsurface Production Rather Than Seafloor Gas Seeps. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015989.	1.0	9
6	Gas hydrates in sustainable chemistry. Chemical Society Reviews, 2020, 49, 5225-5309.	18.7	443
7	Timescales and Processes of Methane Hydrate Formation and Breakdown, With Application to Geologic Systems. Journal of Geophysical Research: Solid Earth, 2020, 125, e2018JB016459.	1.4	45
8	Introduction to Special Issue on Gas Hydrate in Porous Media: Linking Laboratory and Field cale Phenomena. Journal of Geophysical Research: Solid Earth, 2019, 124, 7525-7537.	1.4	3
9	Heat Flow in the Western Arctic Ocean (Amerasian Basin). Journal of Geophysical Research: Solid Earth, 2019, 124, 7562-7587.	1.4	9
10	Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 148, 53-66.	0.6	28
11	Submarine Permafrost Map in the Arctic Modeled Using 1â€D Transient Heat Flux (SuPerMAP). Journal of Geophysical Research: Oceans, 2019, 124, 3490-3507.	1.0	55
12	Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf. Science Advances, 2018, 4, eaao4842.	4.7	43
13	Enhanced CO ₂ uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5355-5360.	3.3	47
14	The interaction of climate change and methane hydrates. Reviews of Geophysics, 2017, 55, 126-168.	9.0	560
15	Ephemerality of discrete methane vents in lake sediments. Geophysical Research Letters, 2016, 43, 4374-4381.	1.5	32
16	Determining the flux of methane into <scp>H</scp> udson <scp>C</scp> anyon at the edge of methane clathrate hydrate stability. Geochemistry, Geophysics, Geosystems, 2016, 17, 3882-3892.	1.0	19
17	Subsea iceâ€bearing permafrost on the U.S. <scp>B</scp> eaufort <scp>M</scp> argin: 2. Borehole constraints. Geochemistry, Geophysics, Geosystems, 2016, 17, 4333-4353.	1.0	28
18	Subsea iceâ€bearing permafrost on the <scp>U</scp> . <scp>S</scp> . <scp>B</scp> eaufort <scp>M</scp> argin: 1. Minimum seaward extent defined from multichannel seismic reflection data. Geochemistry, Geophysics, Geosystems, 2016, 17, 4354-4365.	1.0	33

#	Article	IF	CITATIONS
19	Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth and Planetary Science Letters, 2016, 449, 332-344.	1.8	57
20	Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities. PLoS ONE, 2015, 10, e0139904.	1.1	79
21	Permafrost-Associated Gas Hydrate: Is It Really Approximately 1 % of the Global System?. Journal of Chemical & Engineering Data, 2015, 60, 429-436.	1.0	81
22	Widespread gas hydrate instability on the upper U.S. Beaufort margin. Journal of Geophysical Research: Solid Earth, 2014, 119, 8594-8609.	1.4	37
23	Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochimica Et Cosmochimica Acta, 2014, 131, 81-97.	1.6	67
24	Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 2014, 7, 657-661.	5.4	251
25	Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin. Geophysical Research Letters, 2014, 41, 96-101.	1.5	51
26	Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation. Chemical Geology, 2013, 339, 242-250.	1.4	6
27	Evidence for extensive methane venting on the southeastern U.S. Atlantic margin. Geology, 2013, 41, 807-810.	2.0	53
28	Scientific drilling for climateâ€related objectives on Arctic Ocean margins. Eos, 2012, 93, 213-213.	0.1	0
29	Minimum distribution of subsea iceâ€bearing permafrost on the U.S. Beaufort Sea continental shelf. Geophysical Research Letters, 2012, 39, .	1.5	45
30	Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	55
31	A conduit dilation model of methane venting from lake sediments. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	88
32	26. The Impact of Hydrate Saturation on the Mechanical, Electrical, and Thermal Properties of Hydrate-Bearing Sand, Silts, and Clay. , 2010, , 373-384.		36
33	Volume change associated with formation and dissociation of hydrate in sediment. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	57
34	Parametric study of the physical properties of hydrateâ€bearing sand, silt, and clay sediments: 2. Smallâ€strain mechanical properties. Journal of Geophysical Research, 2010, 115, .	3.3	61
35	Parametric study of the physical properties of hydrateâ€bearing sand, silt, and clay sediments: 1. Electromagnetic properties. Journal of Geophysical Research, 2010, 115, .	3.3	39
36	Thermal conductivity of hydrateâ \in bearing sediments. Journal of Geophysical Research, 2009, 114, .	3.3	95

#	Article	IF	CITATIONS
37	Modern Perspectives on Measuring and Interpreting Seafloor Heat Flux: The Future of Marine Heat Flow: Defining Scientific Goals and Experimental Needs for the 21st Century; Salt Lake City, Utah, 6–7 September 2007. Eos, 2008, 89, 23.	0.1	4
38	Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico. Marine and Petroleum Geology, 2008, 25, 942-951.	1.5	60
39	Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates. Marine and Petroleum Geology, 2008, 25, 884-895.	1.5	50
40	Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project LegÂ1Âdrilling: Introduction and overview. Marine and Petroleum Geology, 2008, 25, 819-829.	1.5	111
41	Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling. , 2008, , .		12
42	Integrating hydrologic and geophysical data to constrain coastal surficial aquifer processes at multiple spatial and temporal scales. Geophysical Monograph Series, 2007, , 161-182.	0.1	1
43	Tapping Methane Hydrates for Unconventional Natural Gas. Elements, 2007, 3, 193-199.	0.5	59
44	Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	1.0	108
45	Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep. Geophysical Research Letters, 2007, 34, .	1.5	34
46	Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research, 2007, 112, .	3.3	361
47	Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, U.S. Atlantic margin. Geochemistry, Geophysics, Geosystems, 2007, 8, .	1.0	49
48	Salt tectonics and shallow subseafloor fluid convection: models of coupled fluidâ€heatâ€salt transport. Geofluids, 2007, 7, 377-386.	0.3	30
49	Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA. Marine Ecology - Progress Series, 2007, 339, 169-184.	0.9	23
50	Comment on "Thermal and visual time-series at a seafloor gas hydrate deposit on the Gulf of Mexico slope,―by I.R. MacDonald, L.C. Bender, M. Vardaro, B. Bernard, and J.M. Brooks[Earth Planet. Sci. Lett. 233 (2005) 49â^'59]. Earth and Planetary Science Letters, 2006, 245, 481-482.	1.8	0
51	Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 2006, 226, 1-30.	1.4	63
52	Gas Hydrates in Marine Sediments: Lessons from Scientific Ocean Drilling. Oceanography, 2006, 19, 124-142.	0.5	113
53	Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure. Marine Geology, 2006, 229, 285-293.	0.9	72
54	Inversion of inductive electromagnetic data in highly conductive terrains. Geophysics, 2005, 70, G16-G28.	1.4	24

#	Article	IF	CITATIONS
55	Coupled geophysical constraints on heat flow and fluid flux at a salt diapir. Geophysical Research Letters, 2005, 32, .	1.5	29
56	Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, 2005, 237, 924-939.	1.8	88
57	Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	125
58	Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophysical Research Letters, 2005, 32, .	1.5	211
59	Redox zonation at the saline-influenced boundaries of a permeable surficial aquifer: effects of physical forcing on the biogeochemical cycling of iron and manganese. Journal of Hydrology, 2004, 296, 164-178.	2.3	75
60	Permeability evolution during the formation of gas hydrates in marine sediments. Journal of Geophysical Research, 2003, 108, .	3.3	156
61	Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 281-300.	0.6	162
62	Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass extinction. Geophysical Monograph Series, 2003, , 255-267.	0.1	28
63	Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary. Geophysical Monograph Series, 2003, , 7-32.	0.1	48
64	A reactivated back-arc source for CAMP magma. Geophysical Monograph Series, 2003, , 151-162.	0.1	15
65	Temporal chemical variations within lowermost jurassic tholeiitic magmas of the Central Atlantic Magmatic Province. Geophysical Monograph Series, 2003, , 163-177.	0.1	6
66	The Late Triassic-Early Jurassic volcanism of Morocco and Portugal in the framework of the Central Atlantic Magmatic Province: An overview. Geophysical Monograph Series, 2003, , 179-207.	0.1	25
67	The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. Geophysical Monograph Series, 2003, , 91-128.	0.1	30
68	Critical evaluation of 40Ar/39Ar ages for the Central Atlantic Magmatic Province: Timing, duration and possible migration of magmatic centers. Geophysical Monograph Series, 2003, , 77-90.	0.1	5
69	Magma flow pattern in the North Mountain basalts of the 200 Ma CAMP event: Evidence from the magnetic fabric. Geophysical Monograph Series, 2003, , 227-239.	0.1	0
70	Thermal State of the Gas Hydrate Reservoir. Coastal Systems and Continental Margins, 2003, , 29-42.	0.0	9
71	The northernmost CAMP: 40Ar/39Ar age, petrology and Sr-Nd-Pb isotope geochemistry of the Kerforne dike, Brittany, France. Geophysical Monograph Series, 2003, , 209-226.	0.1	18
72	Relative timing of CAMP, rifting, continental breakup, and basin inversion: Tectonic significance. Geophysical Monograph Series, 2003, , 33-59.	0.1	33

#	Article	IF	CITATIONS
73	Volatile emissions from Central Atlantic Magmatic Province Basalts: Mass assumptions and environmental consequences. Geophysical Monograph Series, 2003, , 241-254.	0.1	46
74	Paleomagnetic and geochemical constraints on the timing and duration of the CAMP activity in northeastern Brazil. Geophysical Monograph Series, 2003, , 129-149.	0.1	9
75	Thermal Conductivity Measurements in Porous Mixtures of Methane Hydrate and Quartz Sand. Geophysical Research Letters, 2002, 29, 82-1-82-4.	1.5	94
76	Constraints on hydraulic parameters and implications for groundwater flux across the upland–estuary interface. Journal of Hydrology, 2002, 260, 255-269.	2.3	52
77	Anomalous Fresh Water Lens Morphology on a Strip Barrier Island. Ground Water, 2000, 38, 872-881.	0.7	38
78	New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin. Geology, 2000, 28, 859.	2.0	179
79	Fluid, methane, and energy flux in an active margin gas hydrate province, offshore Costa Rica. Earth and Planetary Science Letters, 2000, 179, 153-165.	1.8	65
80	New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin. Geology, 2000, 28, 859-862.	2.0	2
81	Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research, 1999, 104, 5081-5095.	3.3	427
82	Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin. Geology, 1997, 25, 699.	2.0	119
83	Rifting of oceanic crust at Endeavor Deep on the Juan Fernandez microplate. Marine Geophysical Researches, 1995, 17, 251-273.	0.5	10
84	Extensional processes in continental lithosphere. Journal of Geophysical Research, 1995, 100, 24187-24215.	3.3	207
85	Heat flux through an old (â^1⁄4175 Ma) passive margin: Offshore southeastern United States. Journal of Geophysical Research, 1995, 100, 20037-20057.	3.3	28
86	Pressure-temperature-time paths from two-dimensional thermal models: Prograde, retrograde, and inverted metamorphism. Tectonics, 1994, 13, 17-44.	1.3	104
87	Role of horizontal thermal conduction and finite time thrust emplacement in simulation of pressure-temperature-time paths. Earth and Planetary Science Letters, 1994, 123, 49-60.	1.8	24
88	Implications of new gravity data for Baikal rift zone structure. Geophysical Research Letters, 1993, 20, 1635-1638.	1.5	36
89	Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data. Earth and Planetary Science Letters, 1990, 98, 360-379.	1.8	36
90	Thermal modeling of extensional tectonics: Application to pressureâ€ŧemperatureâ€ŧime histories of metamorphic rocks. Tectonics, 1988, 7, 947-957.	1.3	116

#	Article	IF	CITATIONS
91	Seismic and thermal investigations of the Blake Ridge gas hydrate area: a synthesis. , 0, , .		35