Yongsop Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8274592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient coupling between single mode fibers and glass chip waveguides via graded refractive index fiber tips. Optics Express, 2022, 30, 12294.	3.4	4
2	Spin-to-orbital angular momentum conversion in symmetric dielectric nanorings. Applied Physics Letters, 2021, 118, 161106.	3.3	3
3	Evolution of topological edge modes from honeycomb photonic crystals to triangular-lattice photonic crystals. Physical Review Research, 2021, 3, .	3.6	15
4	Directional coupling of surface plasmon polaritons at complementary split-ring resonators. Scientific Reports, 2019, 9, 7348.	3.3	8
5	Pneumatically tunable microwave split ring resonators. Sensors and Actuators A: Physical, 2019, 294, 37-44.	4.1	2
6	Broadband Highâ€Efficiency Chiral Splitters and Holograms from Dielectric Nanoarc Metasurfaces. Small, 2019, 15, e1900483.	10.0	33
7	Photonic Nanostructures from Hexagonal Boron Nitride. Advanced Optical Materials, 2019, 7, 1801344.	7.3	37
8	Optical Chemical Barcoding Based on Polarization Controlled Plasmonic Nanopixels. Advanced Functional Materials, 2018, 28, 1704842.	14.9	17
9	Effects of Fano Resonance on Optical Chirality of Planar Plasmonic Nanodevices. ACS Photonics, 2018, 5, 4538-4544.	6.6	16
10	Plasmonic circuit for second-order spatial differentiation at the subwavelength scale. Optics Express, 2018, 26, 7368.	3.4	29
11	Plasmonic Edge States: An Electrostatic Eigenmode Description. ACS Photonics, 2017, 4, 1607-1614.	6.6	20
12	Optical Chirality from Darkâ€Field Illumination of Planar Plasmonic Nanostructures. Laser and Photonics Reviews, 2017, 11, 1700216.	8.7	11
13	Optical metasurfaces for subwavelength difference operations. Applied Physics Letters, 2016, 109, .	3.3	35
14	Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity. Journal of the Optical Society of Korea, 2016, 20, 188-191.	0.6	6
15	Geometric dependence of metal-coated silicon nanowire plasmonic waveguides. Journal of Optics (United Kingdom), 2014, 16, 025001.	2.2	3
16	Metal-Coated Silicon Nanowire Plasmonic Waveguides. Applied Physics Express, 2013, 6, 042502.	2.4	7
17	Electrically driven nanobeam laser. Nature Communications, 2013, 4, .	12.8	83

18 Preliminary result of a laser-beam scattering RGB-Depth sensor. , 2013, , .

0

#	Article	IF	CITATIONS
19	Frequency selective metal-insulator-metal splitters for surface plasmons. Optics Communications, 2011, 284, 4778-4781.	2.1	17
20	Frequency selective heterojunction metal-insulator-metal mirror for surface plasmons. Physical Review B, 2011, 83, .	3.2	3
21	Plasmonic stop band formation in a metal–insulator–metal ring with a narrow gap. Journal of Optics (United Kingdom), 2011, 13, 075006.	2.2	8